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PREFACE

1N preparing this book the author had two ends in view:

First, to give the student an elementary knowledge of
the science of Trigonometry, together with an introduction
to the theory of functions as illustrated by the trigono-
metric ratios.

Second, to give him practice in the art of computation.
Especial stress has been laid on this side of the subject for
the reason that many students have no other experience
with the calculation of approximate numbers. The value
of preliminary estimates of results and the necessity of
frequent checking are constantly insisted on. This feature
is believed to be novel.

The chapter on the Right Triangle is an informal intro-
duction to the subject. The use of natural functions is
advised here that the student may become familiar with
them. In the remainder of the book logarithms are used
in all computations. In order to meet what seems to be
the demand at the present time, the author has worked the
illustrative problems with five-place logarithms. Person-
ally he prefers four-place, as they are sufficiently accurate
for most practical purposes, and their use permits the

student to solve more problems in the limited time at his
iii
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disposal. By dropping the fractional part of the minute
and the fifth figure of a number, where they oceur in the
data, four-place tables may be used without trouble.

The author is under great obligation to Professor E. W.
Davis, of the University of Nebraska, for his criticism and
suggestion. Much of the chapter on Computation is due

to him.
W. P. D.

GENEVA, August, 1900.
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PLANE TRIGONOMETRY

CHAPTER 1
ON COMPUTATION

1. Suppose I measure this table and find it 3 ft. 6 in. long.
Is it exactly that ? not a shade more nor less? Obviously
no one can be certain of this. We find the table to be 3 ft.
6 in. long within some limit of accuracy beyond which we
do not care or are not able to go.

Should we, by the refined methods known to science,
attempt to get the length to within, say, a millionth of an
inch, we should probably find that two different measure-
ments would give discordant results, while neither result
would agree with our first rude measurement of 3 ft.
6 in.

This inaccuracy holds of all numbers got by measure-
ment; that is, with the great bulk of numbers with which
we have to deal in practical computation.

Nor can we altogether avoid this approximation when
the numbers are ideal. For example, the square root of 2
is 1.4 to the nearest tenth, 1.41 to the nearest hundredth,
1.4142 to the nearest ten thousandth; that is to say, the
square of each of these numbers is nearer 2 than the square
of any other with the same number of places. Similar
remarks apply to all surds, to nearly all logarithms, to ar,
and to the various trigonometric ratios.

1



2 PLANE TRIGONOMETRY

It is plain that an error of a foot in a mile is of far less
relative importance than an error of an inch in a yard. It
is indeed a wonderful triumph of measurement and calcula-
tion to have determine(l the sun’s distance within some hun-
dred thousand miles,@le whole distance being 92,900,000. ’)
This being the accuracy of the sun’s distance, and, further-
more, the earth’s orbit being only approximately circular, it
would be impossible to determine the length of the orbit
with an uncertainty less than some hundred thousand miles,
even though we knew the value of 7 to a million places.

2. The sum of a number of approximate numbers cannot
be accurate beyond the place where accuracy ceases in any
one of them.

Suppose, for example, two men had measured parts of
the same line, one finding his end 307.492 ft. long and the-
other his end 602.43 ft. The length of the whole line is

307.492
602.43
909.92

Since the second man did not measure to thousandths,
the result cannot be accurate beyond hundredths.

A product cannot have a greater degree of accuracy than
that of its least accurate factor. Suppose we wish the prod-
uct of the approximate numbers 23.57 and 612.3. The
approximate number 23.57 may have any value from 23.565
to 23.575, while 612.3 lies between 612.25 and 612.35.
This product may be anything

from 23.565 X 612.25 = 14427.67125
to 23.575 X 612.35 = 14436.15125.

The mean of these results is 14432, but we cannot be
sure of the last figure. We do feel sure, however, that the
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fourth figure is nearer 3 than any other digit. The product
to four figures is 14430.

The labor of obtaining useless figures can be avoided by
simply not getting those partial products that are not to
be retained in the final result.

A convenient arrangement is as below, keeping all deci-
mal points in line and multiplying from left to right. The-

23.57 place of the right-hand figure of the product

612.3 of the multiplicand by any multiplier digit is
14142, as many places to the left or right of the right-

236. * hand figure of the multiplicand as the multi-

4;- ::* plier digit is to the left or right of unit’s place.
W In the example given above, 2, the first figure

of the partial product arising when the multi-
plicand is multiplied by 6, is put two places to the left of 7,
since 6 is two places to the left of unit’s place. The stars
indicate places of figures not obtained and would usually
be omitted. We carry to the first figure retained as we
would carry were the work done in full; moreover, if the
first figure omitted is 5 or more than 5, we carry 1 to the
first figure retained. This is illustrated in the second and
the fourth partial products found above.

The student can test the result by interchanging multi-
plier and multiplicand. If the multiplier or the multipli-
cand has only three-figure accuracy, it will readily be seen
that the product can have only three-figure accuracy.

In division also the accuracy of the quotient cannot
exceed the least accurate of the numbers which are divi-
dend and divisor.

The arrangement for division is given below.

To find the quotient of 14432, divided by 612.3.

Move the decimal point in both dividend and divisor as
many places to the right as are necessary to make the
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28.67 divisor an integer. The left-hand figure of

6123.J144320.  the quotient is placed over the last figure

12888 of the first product, and the decimal point

1837 of the quotient is in line with the decimal

349 point of the dividend. After the last sig-

308 nificant figure of the dividend has been

43 used, the partial products are formed by

3 omitting one, then two, then three final

figures of the divisor, remembering to carry to the first
figure retained, as in multiplication.

3. So much for the ordinary arithmetical processes. The
general principle underlying it all, that accuracy of results
is limited by accuracy of data, continues applicable when
tables or other labor-saving devices are used. With four-
place tables seven-place accuracy is not to be looked for,
and when our data are only four-place it is a foolish waste
of time and increases the liability to error to use seven-place
tables. :

LOGARITHMS

The labor of computation is very greatly abridged by the
use of logarithms. The principal facts concerning the prac-
tical use of logarithms are recapitulated below :

The logarithm of a number is the power to which 10
must be raised to produce the number. Since

10°=1, 10*=10, 102=100, 10®= 1000, etc.,
we have by definition, logarithm 1, written
log1 =0, log10 =1, log 100 = 2, log 1000 = 3, etec.
If m and n are any two numbers, we have by definition,
m =10%, or logm =g,
n=10% or log n=y.
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Multiplying these two equations,
mn =10*+¥, or logmn=2x+y.
.*. log mn = log m + log n.
Similarly, _
log mnpq ---=logm + logn + logp + logg +---. -

I. The logarithm of the product of several numbers is
equal to the sum of the logarithms of the factors.

Dividing the first of the two equations above by the
second, .

m _ 10°

m
;'—"1—(),:‘10’_”, or log;=x—y=10gm—10gn.

II. The logarithm of the quotient of two numbers is equal

to the logarithm of the dividend minus the logarithm of the .

divisor.
Raising m = 10~ to the kth power,
mF =10, or logm*= kx =k log m.
III. The logarithm of any power of a number ts equal to

the logarithm of the number multiplied by the exponent of
the power.

‘\Since a root is a fractional power, the logarithm of the
kth root of a number is 16 times the logarithm of the number.

k
The following series of equations illustrates these prin-

ciples : s[al?
y=NZ

3 [a)? ab\* 1. ab®
log y = log i log <?> =3 log e by III

= §[log «b? — log ¢*] by II
= §[log a + log 5% — log ¢*] by I
= 4[loga + 2log b — 4 log c] by III

N\
\
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4. What is the logarithm of 22738 ? Since the number
lies between 10000 and 100000, its logarithm lies between
4 and 5. By calculation it has been found to be 4.35675.
The integral part, 4, is its characteristic ; the decimal part,
.356675, is the mantissa.

log 22738 = 4.35675, or 22738 = 104367,
log 2273.8 = 3.35675, or 2273.8 = 1033,
log 227.38 = 2.35675, or 227.38 = 10237,
log 22.738 = 1.35675, or 22.738 = 10167,
log 2.2738 = 0.35675, or 2.2738 = 10037,
log .22738 =1.35675, or .22738 = 10137,
log .022738 = 2.35675, or .022738 = 10%3%%,
log .002738 = 3.35675, or .002738 = 10537,

Inspection of this algorithm shows us, 1st, that the char-
acteristic depends solely on the position of the decimal
point and can always be determined by inspection; 2d,
that the mantissa is independent of the decimal point and
depends on the sequence of digits conétituting the number.

The student can easily make for himself a set of rules
for determining the characteristic. In case of a decimal,
say .000473, he can determine the characteristic of 473, and
then move the point six places to the left; by so doing the
characteristic is diminished by six and is 2 — 6= —4,
written 4. The minus sign is written above the character-
istic because it is the characteristic alone that is negative,
the mantissa being always positive.

The mantissas are found from a table. Mantissas are all
approximate numbers, and tables are published giving man-
tissas to four, five, six, and seven places. The kind of table
to use depends entirely on the accuracy of the numbers
which constitute our data. Four-place tables are accurate
enough for ordinary data obtained by the use of field instru-
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ments, five-place tables for all data except such as are
obtained by the use of the most delicate instruments. We
shall use the latter.

USE OF THE TABLE

To find the mantissa of 2273 follow down the left-hand
column of your table of the logarithms of numbers, passing
from page to page until you reach 227 ; run your eye across
the page on this line to the column headed 3; the number
so reached, 35660, is the mantissa sought. In some tables
the first two figures, 35, are printed only in the column
headed 0.

Verify :
log 3748 = 3.57380. log 165 = 2.21748.
log 9741 = 3.98860. log17 =1.23045.
log 112.1 = 2.04961. log 1624 = 3.21059.
log 32.40 = 1.51055. log .0034 = 3.53148.

5. The mantissas of five-figure numbers may be obtained
from the table by interpolation. The mantissa of 37423
lies between the mantissas of 37420 and 37430. We assume
that it lies #; of the way from the first mantissa to the
second; t.e., {4 of the way from 57310 to 57322. The
difference of these numbers is 12 and #; of 12 =3.6 =4.
The mantissa of 37423 is 57310 + 4 = 57314.

We may formulate the process of finding the mantissa
of a five-figure number thus: Enter the table with the first
four figures; subtract the corresponding mantissa from the
next larger mantissa to find the tabular difference ; multiply
the tabular difference by the fifth figure, considered as a
decimal, to find the correction ; add the correction to the
mantissa first found; the result is the mantissa of the five-
figure number.
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In most tables the multiplication spoken of above is per-
formed in the tables of proportional parts printed on the
margin of the page.

Verify the following logarithms :

log 127.34 = 2.10497.  log 8964.3 = 3.95252.
log 34.876 = 1.54253.  log 90002 = 4.95425.
log 42748 =1.63092.  log (.42748)® = 3.78552.

The last problem will present no difficulty if we remember
that the mantissa is always positive. Division of the log-
arithm when the characteristic is negative requires care.
Suppose we wish to divide 3.78552 by 6. We write it
.6+ 3.78552. The division is now a simple matter. If
we wish to divide by 5, we write it 5 + 2.78552. We make
the negative characteristic a multiple of the divisor.

When the logarithm is given and we wish to find the
number, the process is the inverse of the one just considered.
We may formulate it thus: Find in the table the mantissa
equal to or next less than the given mantissa. The corre-
sponding number will be the first four figures of the number
sought. Subtract this mantissa from the given mantissa
to find the correction. Divide the correction by the tabu-
lar difference, obtaining a one-figure quotient. Annex this
figure to the four already found. The result is the five-
figure number corresponding to the given mantissa. Place
the decimal point at the place indicated by the character-
istic. The result is the number corresponding to the given
logarithm.

Verify the following:
 3.14216 = log 1386.3. 2.37489 = log .023708.
2.15362 = log 142.44. .96756 = log 9.2803.
1.87460 = log 74.92.




ON COMPUTATION 9

The logarithm of % is called the cologarithm of m,

written either cologm or col m. In computing, it often
saves labor to add the cologarithm instead of subtracting
the logarithm.

If log m = 3.27463
colog m = log 1 — log m = 0 — 3.27463
= 6.72537 — 10.

The subtraction is readily performed from left to right
by taking each digit, except the last, from 9. The — 10
is used to avoid negative characteristics. Some computers
increase all negative characteristics by 10 and take account
of these 10’s in the final result,

6. Accuracy in computing can be attained only by prac-
tice and by constant care. When the computer has made
his interpolation, he should glance back at the table and
see that his result lies between the proper tabular numbers
and nearest the right one. This takes but an instant and
corrects many errors. The importance of carefully plan-
ning a computation before entering upon it can hardly be
overestimated. The plan should be written out. The com-
puter is then free to devote his whole attention to the
mechanical details of the work. Paper ruled in squares
conduces to accuracy. If the computation be confined to
one column, it can be repeated or a similar one inserted in
a parallel column without repeating the plan. If any given
number occurs repeatedly in a computation, it may be written
down once for all on a separate piece of paper and held
over any number with which it is to be combined.

The computer will avoid many errors if he accustoms
himself to making rough estimates of results. When the
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nature of the subject permits, these estimates may be
obtained by graphic methods.

To insure accuracy the computer must continually check
his work. Every operation, every step in every operation
must be tested before going on. If two numbers are added,
subtract one of them from the sum. If two numbers are
subtracted, add the difference to the smaller. If two num-
bers are multiplied, interchange multiplier and multiplicand
and compare products. Test every step, and when the com-
putation is finished check the final result if the nature of
the problem furnishes a test; if not, work the problem by
a second method and compare results.

The computer who aims at rapidity should train himself
to do all he safely can mentally. He should early acquire
the habit of remembering a number of six or seven figures
long enough to transcribe it. He should perform his inter-
polations mentally. He should add and subtract two num-
bers from left to right. Other devices will come to him
with practice.

The most importaat habit to be acquired is that of being
. constantly on the watch for errors and of constantly check-
ing results. The computer who makes no mistakes can
hardly be said to exist. Such a one would be a marvel.
The ordinary man who forms the habit of not letting a mis-
take go uncorrected is more trustworthy than the marvel
who does not verify his work.




CHAPTER II
THE RIGHT TRIANGLE

7. The three sides z, y, » of the right triangle ABC
furnish six ratios:

yzyzrr

Ly - y —y —y —»

rr Yy xy
If a second right triangle A'B'C’
7 |B be constructed with angle A' equal
to angle A4, it will be similar to the
first and we have :

iyir=xy:n

Therefore,

! 1 !
y_Y¥ r_%2 Y¥Y_Y
A Y

] ! !
2 xz r r o
A B = ==
Fie. 2. y yr =Yy Yy

Each ratio of one triangle is equal to the corresponding
ratio in the other.

Let us construct a third right triangle A"B'"C", making
angle A" > A and side 4"C" = AC.

Cll
From the construction
M=r z'<z y' >y,
" x" x " v
and :/'.—,,' > i—{’ ﬁ < ;’ % > ;/:!
z" =z " r " r
<= > <= A B”
K Yy z z Yy Yy
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The ratios in this triangle are not equal to the corre-
sponding ratios in the first triangle.

The foregoing considerations lead to the conclusion that
these ratios depend for their values solely on the angle 4 ;
i.e., they change when 4 changes, they are constant when
4 is constant. This dependence is expressed mathematic-
ally by saying that the ratios are functions of the angle 4.
To distinguish them from other functions they are called
Trigonometric Functions.

). A

The six trigonometric functions of A are named as
follows :

%= sine of 4, written sin 4.
X .

-, = cosine of 4, “  cosA.
g = tangent of 4, ¢  tanA.
X .
?7 = cotangent of 4, ¢ cot A.
r

7= secant of A4, “ sec A.
r

?7 = cosecant of 4, « esc 4.

8. The foregoing equations define the trigonometric func~
tions. They are fundamental and should be carefully mem-
orized. These definitions may be put into words:

__y _ side opposite

in A4
s r  hypotenuse
cosd =% = side adjacent
~ 7 hypotenuse
tand =¥ = side opposite




THE RIGHT TRIANGLE

‘ z _ side adjacent
cot A = = = ~—=SJAR,
Yy side OPPOSIte

= Z = Mﬁ_.

sec A = = = 5o ad5acent
ese d=2= _.lgyp()t_ﬂ_.
y  side opposite

EXERCISES

13

Find the six functions of each of the acute angles in the

right triangle whose sides are :

1. 5,12, 13. 7. a, V1 —a? 1.

2. 3,4,5. 8. a, b, Va?+ b2

3. 8, 15, 17. 9. 5,5,5V2.

4. 9,12, 15. 10. a, V2ax + 2 a + 2.

5. 5,8, V89. 11, a4+ b,a — b, m.
6. 2,3, V13. 12. m?—n? 2mn, m? + n?

9. Inverse Functions. Suppose we have the expression
sin 4 = 4; how may we describe 4 ? A4 is the angle whose
sine is 4. It is customary to express this by writing

A =sgin—14,

This is read “A is the angle whose sine is 4¢.” So, too, the

expressions cos—'§,tan"§, sec™1§
are read the angle whose cosine is
3, the angle whose tangent is 3,
the angle whose secant is 4.
These functions are called inverse

C

functions. They are distinguished D—<
from the trigonometric functions
by the exponent — 1.

Fi16. 5.



14 PLANE TRIGONOMETRY
ﬁ( L owh:ete 5“\
Let it be required to construct sin—!3.
Construction. At B erect BC perpendicular to DB and
equal to 3. With C as a center, and with a radius equal
to 5, describe an arc cutting BD at A. Draw CA4; then is
A the required angle. For by definition

sind =%, or 4=sin"1}.

NS

EXERCISES
Construct the following angles:

1. sin—'}, sin—'}, sin~'3.
cos~'}, cos~'4, cosT'.
tan—'}, tan—'§, tan—'l.
cot™'g, cot—'2, cot~!5.
sec™'§, sec™'2, sec™'5.

LA

6. csc”'§, csc™'g, csc!'3.
Show by constructing a figure that:
7. sin~'§ = cos~'4 = tan—'}.
Show by construction that the following angles are im:

possible. )
8. sin~'§, cos!2, sec™'§, cscTli.

. a a
9. sm—‘zy cos“zy a>b.

b b
10. sec—1—y csc -y b<a.
a a

10. Functions of Complementary Angles. The angles 4 and
C are complementary. By definition

sinA=g=cosC. cotA=E=ta.nC.
» Y

cosA=%=smC. secA=£=cscC.

ta,nA-—2=cotC. cscA=r=secC.
z Yy
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We may summarize these relations by saying tha.t@ny
function of an angle is equal to the

co-function of the complementary ¢
a.ngle) In this statement we assume > y
that the co-function of the cosine is z

the sine, etc. The cosine, cotangent, 4 |B
cosecant are contractions for comple- Fie. 6.

ment’s sine, complement’s tangent, complement’s secant.

EXERCISES
1. The functions of 30° are:
sin 30° = 4, cos 30° = 4 V3, tan 30° = § V3.
cot 30° = V3, sec 30°=3V3,  csc30°=2;
write the functions of 60°.

2. sin 40° = cos 50°; express the relations between the
other functions of these angles.

3. The angles 45° + 4 and 45° — 4 are complementary ;
express the functions of 45° + A4 in terms of the functions
of 45°— 4.

4. A and 90° — A4 are complementary; express the func-
tions of 90° — 4 in functions of A4.

5. 45° is its own complement; show that sin 45° = cos 45°,
tan 45° = cot 45°, sec 45° = csc 45°.

11, Fundamental Relations of the Trigonometric Functions.
. The six functions sine, cosine, etc.,
C are connected by a number of equa-

T tions. The more important of these
Y| are derived below. The first five
7 x % depend immediately on the defini-

tions, the other three on a well-
known property of the right tri-
angle. These last involve the squares of the functions. By
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universal usage powers are indicated by affixing the expo-
nent to the functional symbol. E.g., (sin 4)* is written
sin? 4, (cos 4)® is written cos® 4.

Since ‘%Xi:l we have sin 4 csc 4 =1 [1]
TxI=1 “ cosdsecd=1 [2]
r =z
Y%x%=1 « tandcotd=1 [3]
z Yy
y.2_y  sind_
r r = cos 4 tan 4 [4]
r.y_*= « °05A=
P ey sm A cot 4. [5]

From the figure vr+at=rl
Dividing this equation by +% by % and by %?

2 2 2 2

T =1; (g) +<’—:> =1.  ..sin?4+cos’4 =1.[6]
2 2 2 2

3L2+ 1= (g) + 1 =<£> . ..1+4tan?4 =sec?’4.[7]

2 2
+£:=%; 1+(g—6>2=<£> . . 1+4cot?4 =csc?4.[8]
y ¥ Y Y

These eight identities constitute the fundamental rela-
tions of the trigonometric functions. They are very im-
portant and should be committed to memory.

By means of these relations, when we know one function
of an angle, we can find all the others.

Suppose, for example, sin 4 = 4.

(6] cos A=V1—sin®A=V1—}=4V3

[4] tanA=M—L—L=§\/§.
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1
[3] COtA—t—aH—\/g.
1 2 ¢
2 sec 4 = —— = —— = $V3. 2
2] cosd V3 ¥ !
1 7 = B
[1] ose 4= =2 4 mes

The values of these functions may also be found by con-’
structing sin—!4 and finding the third side of the triangle
geometrically. This side is V3. The functions can now
be written from the definitions (§ 8).

EXERCISES

Find all the functions of the following angles, using each
of the methods illustrated above :

1. cot™!2. 3. cot™'l. 5. cos™!3%. 7. cos~'2.
2. tan—'3. 4, sec™13. 6. csc™!3. 8. sin~1}.

12. We can express any function of 4 in terms of any
other function of 4 by making use of formulas [1] to,[8].
As an illustration let us express each of the functions in
. terms of the tangent.

tan 4 = tan 4.
(3] oot 4 = ——-
[7] scd4=V1+tanid,
2
(8] cscA=w/1+cotﬂA=\/1+ta1 _ Mittanl4

n% A tan A
. 1 tan A :
1 sin A = = .
(1] cscA V14 tan?4
[2] cos 4 = 1 1

sec A = \/1+ta.n’A.
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EXERCISES i

Express each of the functions of 4 in terms of
1. sin 4. 2. cosA. 3. cotA. 4. secd. 5. cscA.
6. Tabulate the results.
Prove the following identities by means of formulas [1] 5
to [8]. '
7. 8in 4 sec A = tan 4.
8. (sin A + cos 4)*=1+ 2 sin 4 cos 4.
9. (sec 4 + tan A)(sec 4 — tan 4)= 1.
1—s8ind __ cosdd
cosd  1+sind
11. (1 + tan 4)? 4 (1 — tan 4)? = 2 sec? A.
12. (8in 4 + cos 4)% 4 (sin A — cos A)? = 2.

10.

13. Functions of 45°, 30°, and 60°.

Construct angle 4 = 45°, lay off AB =1, and complete
the right triangle.

Fia. 10.

Angle ¢ =45°. .. BC=1and AC = V2.
From the definitions
sin 45° = cos 45° = —15 =} V2.
tan 45° = cot 45° = 1. _
sec 45° = csc 45° = \/T-E =V2.
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Construct the equilateral triangle ADC with side = 2
Bisect angle 4 by AB. The triangle ABC is a right triangle,
with angle BAC = 30° angle C = 60° side BC =1, and
side AB =V3.

By definition

sin 30° = . sin 60°=‘/T§=,}\/§.
cos 30° = \/T—zix/;. cos 60° = 3.
1 - o _ V3 _
tan 30° = 7—.—*'\/ . tan 60 —1—-——\/5
V3 1
cot 30° = ——=\/— cot 60° = =3V3.
1 V3 ¥
sec30° = — =33 sec 60° = § = 2.
\/5 1
2
csc30° =3 =2, cse 60° = — = 3 V3.
1 7 %

14. Trigonometric Tables. In the preceding paragraph we
have found the functions of 30° 45°, and 60° by simple
geometrical expedients. The functions of other angles are
not found so easily. For purposes of computation, tables
of trigonometric functions are used. Such tables give the
values of the sine, cosine, tangent, and cotangent of all
angles from 0° to 90° at intervals of 10’.. Examine such
a table. You will find in the left-hand column the angles;
their sines, cosines, tangents, and cotangents are opposite in
appropriately headed columns. The column at the extreme
right also contains angles. Inspection will show you that
these angles are the complements of the corresponding
angles at the left. We learned in § 10 that the function of
any angle was the co-function of its complementary angle.
The sine of an angle at the right is the cosine of the
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corresponding angle at the left. You will find this indi-
cated in the table by the word cosine at the bottom of the
column headed sine. Similarly for the other functions. If
you examine your table carefully, you will find that the
angles run down the left side of the page till 45° is reached ;
they then run up the right side of the page till 90° is
reached. If the angle is less than 45° you look for it at
the left; if more than 45° at the right. If the angle is
at the left, the name of the required function is at the top
of the page; while if the angle is at the right the name of the
function is at the bottom of the page.

The tables do not contain secants and cosecants. These
functions are reciprocals of cosine and sine, and can readily
be found by taking advantage of this fact. You will find
by experience that it is never necessary to use them in
computation. )

Take your table and run down the column of sines. They
increase with the angle. So do the tangents. Examine the
cosines and cotangents. They decrease as the angle increases.

15. The table gives the functions of angles which are
multiples of 10'. To find the functions of other angles
we interpolate, as explained in § 5. Care must be taken
to add the correction in finding sines and tangents, to sub-
tract it in finding cosines and cotangents.

Find the sine of 27° 34’

sin 27° 30' = .4617. -
The tabular difference - = 4643 — .4617 = 26.
The correction = .4 of 26 =10.4 =10.

sin 27° 34' = 4617 + 10 = .4627.

Find ﬁhe cosine of 63° 27"
cos 63° 20' = .4488.
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The tabular difference = .4488 — 4462 = 26.

The correction = .7 of 26 =18.2 = 18.
cos 63° 27' = .4488 — 18 = .4470.

Find the tangent of 84° 28'. .
tan 84° 20' = 10.078.

The tabular difference = 10.385 — 10.078 = 307.

The correction = .8 of 307 = 245.6 = 246.

tan 84° 28' = 10.078 + 246 = 10.324.

The work which is here done out in full should be per-
formed mentally as far as possible. In case your table has
a column of differences, the operation of finding the tabular
difference is unnecessary ; if your table is provided with a
table of proportional parts, the operation of finding the
correction is much simplified.

EXERCISES
Verify the following:
sin 0°42' =.0122. sin 58° 38" ='.8539.
cos 0°42' = .9999. cos 58° 38' = .5220.
tan 0°42' =.0122. tan 58° 38' = 1.6405.
cot 9°42' = 5.8505. cot 58° 38' = .6096.
sin 43° 01' = .6822. cos 28°13' = .8812.
tan 38° 29' = .7949. cot 81° 31' = .1492.

To find sin—'.4327.
The next smaller sine is .4305, the sine of 25° 30".

The difference = 4327 — .4305 = 22.
The tabular difference = .4331 — .4305 = 26.
Correction =32 =38.

.*.8in~1.4327 = 25° 38",
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Find cos—! .8826.
The next larger cosine is .8829, the cosine of 28° 00".

The difference = .8829 — .8826 = 3.
The tabular difference = .8829 — .8816 =13.
The correction = =2

.. cos—! .8826 = 28° 02'.

Here the next larger cosine is taken because the cosine
is a decreasing function.
EXERCISES
Verify the following :
tan—?!.4329 = 23° 24". tan—! 3.4268 = T3° 44/,
cot—! .3721 = 69° 35". cos™! .4268 = 64° 44".
sin—?! .8523 = 58° 28" cot™! 1.4823 = 34° 00".

16. The Solution of the Right Triangle. To solve a right
triangle is to find numerical values for the unknown parts.
This is possible when two parts, one of which is a side,
are known. Two methods of solution are open to us, — the
Graphic and the Trigonometric.

Graphic Solution. It is desirable to solve all problems
by this method before proceeding to the more accurate
trigonometric method. It gives rough approximations and
enables the student to detect his grosser mistakes in the
application of the trigonometric formulas. The solution
consists in accurately constructing the figure from the data
given. The required or unknown parts may now be care-
fully measured by scale and protractor. The use of paper
ruled in squares facilitates this work. The only instru-
ments needed are a scale, a protractor, a straight-edge,
and a pair of dividers. Two-figure accuracy is all that
should be aimed at in this method of solution.
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17. Trigonometric Solution. In using this method we com-
pute the values of the unknown parts. The first four defini-
tions (p. 12) furnish formulas sufficient for this purpose.

These formulas are :

(a) sind = (c) cos A =~

8 YIS
< I8 28

(b) tan 4 == (d) cot 4 =
No matter what two parts are given, one of these four
formulas includes them both. This statement assumes that
when 4 is known B is known, since the two angles are
complementary ; and it further assumes that when A is
known any of its functions are known, and wvice verse,
since the tables enable us to find the one from the’ other.

The student should satisfy himself of the truth of ‘this
statement by selecting all possible combinations of two
parts as known parts. To effect the solution we proceed
as follows: .

Select a formula containing the two known parts, and
substitute in it the values of these parts; the resulting
equation will give a third part. Of the three parts now
known, one is an angle and two are sides. To find the
remaining side, select a formula containing it. Where pos-
sible, a formula should be selected which does not contain
the computed part. Experience will show that this is pos-
sible when one of the given parts is an angle.

Checks. These computations, like all others, should be
checked. A convenient formula for this purpose is

M =a? 4yl .
or y = —at=(r +2)(r —2),
or = —yi=(r+ )0 — ).

The problems that follow illustrate the process of solution.



24 PLANE TRIGONOMETRY

1°. The hypotenuse of a right triangle is 36, and one of
its angles is 32° 14'; find the other parts.

Graphic Solution. Construct the
angle A = 32° 14/, or as nearly so
as your protractor admits; lay off
AC=36; drop CB 1 to AB. The

cu g triangle ABC is the required tri-
4 Fio. 1. 'B angle. Measure 4B and BC.
Trigonometric Solution. C=90°— 32°14' = 57° 46,

x

Formula (b) cos 4 = - c.x=rcosd.

[table] x = 36 (:8459) = 30.45.
Formula (a) sin 4= 3; c.y=rsin A
[table] y = 36 (.5334) = 19.20.
Check. 22=(r+y)(r—y).
(30.45)* = (55.20) (16.80).
927.2 = 927.4.

This shows that our work is fairly accurate.

2°. One leg of a right triangle is 27, and the adjacent
angle is 67° 23'; find the other parts.

Graphic Solution. Construct angle 4 =
67° 23', lay off AB = 27, erect the 1 BC.
ABC is the required triangle. Measure AC
and BC.

(o)

Trigonometric Solution.
C=90°— 4 =22° 37
Formula (b) cos 4'= ;
27
T .3846

= T70.21.

r
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Formula (c) tanA=g- .y =z tan 4.

y = 27(2.4004) = 64.81.
Check. =+ ) (r— ).
(64.81)% = (97.21) (43.21).
4200.2 = 4200.4.

3°. The hypotenuse of a right triangle is 48, and one leg
is 37; find the other parts.

Graphic Solution. Construct the
right angle ABC, lay off BA =37,
from A4 as center, with radius 48, draw
an are, cutting BC in C; draw AC.
ABC i3 the required triangle. Meas-
ure BC and the angle BAC.

Trigonometric Solution.

Formula (b) cos A = ; = 3} = .7708.

4 =39° 34
€ =90°— 4 = 50° 26/,
Formula ()  sind = % .y = 48 sin 39° 34",
y = 48 (.6370) = 30.58.
Check. 2=+ y)(r—y).
(37)% = (78.58) (17.42).
1369 = 1368.9.

4°. The two legs of a right triangle are
8 487 and 756; find the other parts.
LY Graphic Solution. 1In the right angle
ABC lay off BA =487 and BC =T756; draw
L AC. ABC is the required triangle. Meas-
ure AC and the angle A.
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Trigonometric Solution.
Formula (d) cot 4 = $§3 = .6442.

A4 =57° 13"
C=90°— .14 =232°47",
. 487 487 487
Formula (a) sin C = & TS ghe = BalE
r = 899.4.
* Check. y¥=(r+x)(r—=).

(756) = (1386.4) (412.4).
5715636 = 571740.

Four-figure accuracy is all that we expect, and this we
probably have in » but not in (» + ) (r — ).

EXERCISES
Exercises 1-6 refer to Fig. 15; 7-16 refer to Fig. 16.
1. = =20, »=30. 4. A =30°24", r=207.
2. y=17, r = 60. 5. C =38°47', r=1034
3. x=34, y=45. 6. A =64°23', x=20.32.
4
(o)
T y ¢ a
@ b
A lB A 4
Fra. 15. FiG. 16.
7. a=20, A=30° 12. b =1.306, c¢=2.501.
8. b =16, A =45° 13. A =15°17', ¢ =163.
9. ¢ =175 B =60 14. A =81°17', b =.0143.
10. a =12, b =15. 16. « =137.4, b=101.2.

11. « =407, ¢ =609. 16. B=65°8', ¢=38.145.
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18. The Solution of Problems. The problems that com-
plete this chapter can all be solved by right triangles.
While different problems demand different methods of
solution, the following general method of procedure will
be found very useful:

1°. Carefully construct a diagram to some convenient
scale and find the graphic solution by proper measure-
ments. -

2°. Examine the diagram for a right triangle with two
parts given; if this triangle contains the required part,
solve it; if not, consider all the parts of this triangle as
known, and find another right triangle with two parts
known ; if this second triangle contains the required part,
the method of solution is obvious; if it does not contain
the required part, repeat the process until a triangle is
found that does contain it. It may be necessary to draw
auxiliary lines. When you have found the several steps
that lead to the solution, review the work to make sure
that all of them are necessary.

3°. Proceed to the computation, being careful to ckeck
each step. No computation should be made until the whole
process of solution is determined upon and written out.

Definitions. 1f O denote an P
observer, P an object above the
horizon, and POH' a vertical " ,

plane intersecting the horizon [ H
in HH', the angle POH' is called

the Elevation (or Altitude) of P. Q
If the object be below the hori- Fia. 11.

zontal plane, as at @, the angle QOH' is called the depression
of Q.

The bearing of an object is its direction from the ob-
gerver. The use of the word is obvious from the following
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illustrations. If O be the observer, the bearing of P is
E 20° N,of Qis N 25° E,of R is W 30° N, of T is S 25° W.

v
Q
R 25" P
. 30 20°
1) ) E
”ﬂ
T
'S
Fi1a. 18. FiG. 19.

Bearing is also often given in terms of the divisions of
a mariner’s compass. The circle is divided into 32 equal
parts, the points of division being named as indicated in
the figure.

EXERCISES

1. The center pole of a tent is 20 ft. high, and its top is
stayed by ropes 40 ft. long; what is the inclination of the
ropes to the ground ?

2. A man standing 140 ft. from the foot of a tower finds
that the elevation of its top is 28° 25'; what is the height
of the tower ?

B 3. At what latitude is the circumference
of a parallel of latitude equal to two-thirds
L of the circumference of the equator ?

E
0 Suggestion. Let PEP'E’' be a section of
the earth through its axis, PP' its axis,
P’ EE' the equator, LL' the circle of lati-
Fia. 2. tude. Then will EOL be the latitude.
4. The length of a degree of longitude at the equator

is 69.16 mi.; find a formula for the length of a degree of
longitude at latitude .
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5. A ladder 40 ft. long reaches a window 33 ft. from the
ground. Being turned on its foot to the opposite side of
the street, it reaches a window 21 ft. from the ground;
how wide is the street ?

6. From a window the top of a house on the opposite
side of a street 30 ft. wide has an elevation of 60° while
the bottom of the house has a depression of 30°; what is
the height of the house ? )

-7. A pole stands on top of a knoll. From a point at a dis-
tance of 200 ft. from the foot of the knoll, the elevations
of the top and the bottom of the pole are 60° and 30°, respec-
tively ; prove that the pole is twice as high as the knoll.

8. A regular hexagon is circumscribed about a circle
whose radius is 20 ft.; find the length of the side of this
hexagon.

9. The radius of a circle is 1. Find the side, the perim-
eter, the apothem, and the area of a regular inscribed poly-
gon of 5 sides, of 8 sides, of 9 sides, of 12 sides, of n sides.

10. A person at the top of a tower 100 ft. high observes
two objects on a straight road running by its foot. The
depression of the nearer is 45° 36/, of the more remote is
30° 24'; what is their distance apart ?

11. If the edge of a regular tetrahedron is 10 ft., find the
length of a face altitude; the length of the altitude, and
the angle between two faces.

12. The roof rises from the adjacent sides of a square
house at an angle of 30°; find the angle which the corner
of the roof makes with the horizon.

13. At a certain port the seacoast runs N.N.E, and a
vessel 10 mi. out is making 12 mi. per hour 8. 8. W. At
2.30 .M. she is due east; what is her bearing at 2 p.m. ?
cat 3pmM.? At 2 p.M. a vessel sailing 10 mi. per hour is
dispatched to intercept her; what course must the latter
vessel take ?
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Suggestions. Let P be the port and SS'
P /s the course of the vessel, E its position at
2.30 p.m. Let PD be perpendicular to SS';
D find when she will be at D. The bearings
at 2 p.mM. and at 3 .M. will be easily found.
To find course of second vessel let Q@ be
point of meeting and ¢ the time after 2
S;_m o P.M., when they meet. PQ and DQ can
o now be calculated in terms of ¢, which

can be easily found.

14. A smokestack is secured by wires running from
points 35 ft. from its base to within 3 ft. of its top.
These wires are inclined at an angle of 40° to the ground.
What is the height of the smokestack ? the length of the
wires ? What is the least number of wires necessary to
secure the stack ? If they are symmetrically placed, how
far apart are their ground ends? How far are the lines
joining their ground ends from the foot of the stack ? from
the top of the stack ? What angle do the wires make with
these lines ? with each other ? 'What angle does the plane
of two wires make with the ground ? What angle does
the perpendicular from the foot of the stack on this plane
make with the ground ? what is its length ?

15. On the U. S. Coast Survey an
observation platform 50 ft. high was
built. The platform was 8 ft. square.

The four legs spread to the corners of

a 12-foot square at the base. They

were braced together by three sets of

cross-pieces, as represented in the illus-

tration. If the cross-pieces are equidis-

tant and the lowest is 3 ft. from the

ground, find the length of each piece Fic. 22.
required for the construction.

Q
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16. A man wishing to know the width of & river selects
a point, 4, one bank, directly
opposite a tree, TR, on the other R
bank. He finds its elevation to
be 10° 30'; going back 150 ft.
to B, he finds its elevation to
be9°. What is the width of the _% =
river? (Find 4C, perpendicu- £ 4 Pro. 2.
lar to BR; then AR and AT.)

17. Upon the top of a shaft 125 ft. high stands a statue
which subtends an angle of 3° at a point 200 ft. from the
shaft ; how tall is the statue ?

18. A wheel 1 ft. in diameter is driven by a belt from
a wheel 4 ft. in diameter. If the shafts bearing these
wheels are parallel and 10 ft. apart, how long will the
belt be (a) if crossed ? (B) if not crossed ?

19. In a circle whose radius is 15 ft., what angle will
a chord of 20 ft. subtend at the center ? a chord of 25 ft.?
of 10 ft.? In a circle of radius », what angle will a chord,
a, subtend ?

20. In a circle of 15 ft. radius, find the area of the seg-
ment cut off by a chord of 18 ft.; the area of the segment
included between this chord and a chord of 25 ft.

21. The base of a quadrilateral is 60 ft., the adjacent
sides are 30 ft. and 40 ft.,, the corresponding adjacent
angles are 110° and 130° respectively; find the fourth
side and the other two angles.

22. The elevation of a balloon due north from 4 is 60°;
from B, 1 mi. west of 4, its elevation is 45°; what is the
height of the balloon ?

23. One of the equal sides of an isosceles triangle is
47 ft., and one of the equal angles is 38° 24'; what is
the base of the triangle ?




CHAPTER III

THE TRIGONOMETRIC FUNCTIONS OF UNLIMITED ANGLES

19. A directed line is a straight line generated by a point
moving in a given direction. It possesses two qualities —
length and direction.

The lines 4B and DC are of equal length but of opposite
direction or sign. We indicate the direction of a line by
the order of naming its extremities. For example:

’ B AB=— BA,
—— 5 or AB+ BA =0.
Fi6. 4.

Parallel directed lines may be added by placing the
initial point of the second on the terminal point of the
first. Their sum is the line defined by the initial point
of the first and the terminal point of the second. They
may be subtracted by placing their terminal points together.
The remainder is the line defined by the initial points of
the first and second.

A B C
D K F [ed
Fia. 2%.
AB + BC = AC. DE + EF + FG = DG.
AC+ CB= 4B. DG — FG + FE = DE.
AC — BC = AB. GF + FE = GE.
AB — CB= AC. GE — FE = GF.

32
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The difference may also be obtained by putting the initial
points together. The remainder is defined by the terminal
points of the second and the first.

AC — AB = BC.
AB — AC = CB.

By general agreement horizontal lines are positive when
they make to the right, negative when they make to the left.
Vertical lines are positive when they make upwards, nega-
tive when they make downwards.

Measurement. A directed line possesses two qualities —
length and direction. Measurement takes account of both.
Its length is the number of times it contains the unit line,
and its direction is indicated by its sign.

20. Angles. We conceive the angle L VM to be generated
by the revolution of LV about V till it comes into coinci-
dence with VM. This revolution may
be performed in two ways: 1st, as
indicated by the arrow marked a;
2d, as indicated by the arrow marked
B. In a the motion is counter-clock-
wise (opposite to the motion of a clock hand), in 8 the
motion is clockwise. Mathematicians have agreed to call
the former motion positive. The angle denoted by a is
positive, B8 is negative.

Nomenclature. Capital letters denote points; small let-
ters, lines; Greek letters, angles. The angle above may be
named, indifferently, LVM, im, a.

The angle m! is the angle described when 7 turns in
a positive direction to coincidence with Z The angle

" described by m when it turns negatively into coincidence
with { is — Im = — a.
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The turning line is the inttial line of the angle; the other
bounding line is the terminal line. In naming an angle,
the initial line is always put first.

The angle /m is generated by the revolution of /, in a
positive direction, until it comes into coincidence with m.
If 7 continues to revolve, it will again come into coincidence
with m. The angle it has described is still called im. It
differs from the former /m by a whole revolution, 360°. The
two angles are congruent. If I continues to revolve, it will
pass m repeatedly. The angles described when it passes
m are all denoted by Im. They differ from each other by
some multiple of 360°. They are congruent angles. While
Im denotes any one of these congruent angles, the smallest
is always understood.

The student may get a clearer conception of what an angle
is by considering the motion of the minute hand of a clock.
In one hour this hand describes an angle of 360°; in an
hour and a half, an angle of 540°; in a half day, an angle
of 4320°% and so on. At 12.15, 1.15, 2.15, 3.15, etc., this
hand is in the same position. Counting from 12 o’clock, it
has described angles of 90°, 450°, 810°, and 1170°. These
angles are congruent. It is to be remembered that in the
case under consideration all the angles are negative.

21. Addition and Subtraction of Angles. Angles are added
and subtracted in the same way that lines are.

The sum of two angles is found by placing their vertices
together and bringing the initial line of the second into
coincidence with the terminal line of the first, preserving
the direction of both. The angle determined by the initial
line of the first angle and the terminal line of the second
angle is their sum.

Two angles are subtracted by bringing together their
terminal lines. The angle determined by the initial lines
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of the first and second angles is their difference. The
same result may be obtained by placing their initial lines
together. Their difference is defined by the terminals of
the second and the first. It is to be noted that the differ-
ence defined above is the difference obtained by subtracting
the second angle from the first.

LVM + MVN =LVN.

LVN + NVM = LVM. n IL
LVN — MVN = LVM. é
LVN —LVM = MVN. v : L
LVM—LVN = NVM.

22. Measurement of Angles. The measure of an angle is
the number of times it contains the unit angle, and this
measure will be positive or negative, according as the angle
is positive or negative.

Definition. A Perigon is the angle generated by a
single, complete revolution of a line about a point in a
plane. Two unit angles are in common use:

C The degree, which is 4} of a perigon.) This unit is too
familiar to require further comment.
" The radian, which is the angle whose arc is equal to the
N radius.

The radian is a definite angle. For the circumference of
any circle is 2 7r (w = 3.1416) times its radius. The angle
whose arc is equal in length to the radius is therefore the

angle whose intercepted arc is %rth of the circumference.

Since angles are proportional to their arcs the radian is
El;th of the perigon.
Radians are denoted by the letter r, e.g., 17, 27, 6", 7.

Generally, however, this symbol is omitted unless such
omission gives rise to ambiguity.



36 PLANE TRIGONOMETRY

Formulas for changing from degree measure to radian
measure, and vice versa, are readily obtained.

27 = 360°. N
1 =300 _ 180" _ 5702958
2n
. . 180°
To reduce degrees to radians, divide by p—
180°

To reduce radians to degrees, multiply by

—
When the angle bears a simple ratio to the perigon, its
radian measure is expressed as a multiple of 7.

o o m™ o 3 o ™
Bg, 180°=m, 90°=7, 210°=3w, a°=T.
EXERCISES

1. Express the following angles in terms of 7 radians : -
30°, 45° 60° 75° 90° 105° 120° 135° 150° 165° 210°,
225° 240° 300° 330° 450° 600°. )

2. Express the following angles in degrees: } , § m,
$m 3T P35 o kT

3. Express the following angles in radians: 130°% 36° 4/,
147° 21', 200°, 340° 36, 38° 35'.

4. Express the following angles in degrees: 17, 21, 5,
174, 3.6, 5747, 8.1, 107, 1~.1. '

Degree measure is used in all practical applications
of trigonometry, while radian measure is used in analyt-
ical work. In this book both systems are used indiscrimi-
nately.

23. Quadrants. It is customary to place the angle in
such a position that the initial line is horizontal and the
vertex of the angle toward the left.
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The initial line and a line through the vertex perpen-
dicular to this divide the perigon into
four equal parts called quadrants. I I
These quadrants are numbered I, II,
II1, IV, as in the accompanying figure. °
An angle is said to belong to, or to be I v
of, the quadrant in which its terminal
line lies. Thus, Fia. 28.

angles > 0°and < 90° are of the Ist quadrant.
“ > 90° « <180° “ IId «
“«  >180° « <270° “ II1d  «
“«  >270° « < 360° “ IVth «

Angles greater than 360° may be said to belong either
to the quadrant of their smallest congruent angle, or to the
quadrant determined by counting the number of quadrants
passed over in the generation of the angle.

E.g., the angle 800° is congruent to 80° since 800° = 2 X
360° 4- 80°.

This angle belongs to either the 1st quadrant or to the
9th since 800° = 8 x 90° + 80°.

EXERCISES

To what quadrant do each of the following angles belong:
50° 150°, 200°, 300° 400° 500° 600° 700° 1000° 2000°
10000°, 100000°, — 40°, — 100°, — 200°, — 300°, — 600°,

T 2w
3 3 3lm, T4m §m, §m, 3pmw?

24. Ordinate and Abscissa. The position of any point in
the plane is uniquely determined as soon as we know its
distance and direction from each of the two perpendicular
axes XX' and YY' The distance from XX' (SP in the
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figure) is called the ordinate of the point P. Its distance
from YY'(OS in the figure) is the abscissa of P. Together

Y they are the coordinates of P. The

B—R, abscissa is usually denoted by z, and

F P, the ordinate by y. We write P =
xS S. | _» (%,y), where the abscissa is always
5, |0 b put first. These cobrdinates are

P, R, directed lines, and according to the

R, p convention mentioned in § 19 (p. 33),

y abscissas which make to the right

F1a. 2. are positive, to the left, negative;
ordinates which make upwards are positive, downwards,
negative. The initial extremity of the abscissa is on the
y-axis, of the ordinate on the z-axis. The signs of the
codrdinates in the several quadrants are therefore:

I 1I III v

e
+

' + . _

EXERCISES

Draw a pair of axes (preferably on coordinate or cross-
section paper) and fix the following points:

3,5; -3,7;3,—-7; —6,10;4,—8; —3,—5; —1,2;
—2,—6;3,0;, —2,0; 0,4; 0,—5; 0,0. ’

Nore. Since RP = OS and OR = SP, the coordinates of P may
be taken as RP and OR instead of OS and SP.

25. The Trigonometric Functions of any Angle. We are
now in a position to define the trigonometric functions of
any angle. These definitions are more general than those
given in § 7 and include them.



UNLIMITED ANGLES 39

Let /m (or XOP) be any angle. Through 0O, its vertex,
draw YY' perpendicular to 0X. Take XX'and YY' as axes
of coordinates. Let P be any
point on m, and z, y its coor-
dinates. Let OP = r, and let us
agree that » shall be positive
when it lies on m and negative
when it lies on the backward
extension of m. Denote the
angle Im or XOP by ¢.

The functions are defined as follows:

sine of ¢ =sin¢g=y/r
cosine of ¢ =cos¢p=x/r
tangent of ¢ =tan¢ =y /x.
cotangent of ¢ =cotp =z /.
secant of ¢ ~=secp=r/z.
cosecant of ¢ =cscp=r/y.

Nore. Thése definitions do not differ from those in § 7 except in
generality.

These are all the possible ratios of the three lines z, y,
and 7.

These ratios are independent of the position of P on m.
For if P be taken at any other point, as P, the signs of z,
¥, and » are unchanged, while the ratios of the lengths are
the same in both cases, since the triangles OSP and OS'P'
are similar. If the point be taken at P" on the backward
extension of m, the signs of z, y, and » are all changed.
The triangles OSP and 0S"P" are similar. The ratios of
x, y, and r are therefore the same as before in both magni-
tude and sign.
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26. These ratios, being independent of the position of P
on m, are functions of the angle ¢. Their algebraic signs

depend upon the quadrant to which ¢ belongs.

Draw an angle of each quadrant and verify the following
table, taking » positive.

z Yy sin cos tan cot csC

S IS A (R A T +
n| - |+ |+ -]—-|- +
111 - - - - + + -
Iv + - - + - - -

In quadrant I all functions are positive.

—130° — 190°, — 240°, — 300°.

II
111
Iv

143

143

113

EXERCISES

1. Write down the signs of the several functions of the
following angles:
40° 100° 160°, 200° 250° 300° 340°, — 40°, — 80°,

&«

14

negative except sin, csc.

tan, cot.
cos, sec.

2. In Fig. 31 the lines CC' and BB' are drawn equally
inclined to X X', forming the angles
If we take

OP, = OP, = OP, = OP,,

functions.

C Py Py Py Py

have

sin ¢; = sin ¢, = — sin ¢,
Find the corresponding relations between the other

— sin ¢,.

X . .
the coordinates of the points P,,
g Po Py and P, will be equal in mag-

nitude but not in sign. We shall

N

_\
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8. Show by Fig. 31 that there are always two angles less
than a perigon which have the same sine: 1st, when the
sine is positive; 2d, when it is negative. Show the same
thing for each of the other functions.

4. Construct the following angles: (See § 9.)

sin~!§; sec™13; cos~!—1; tan—!—2;
1__1. —1 __ 9. in—! — 1. —11.

cot™! —1; sec 2; sin 43 ecseTll;

tan='2;  cos~'3}; sin—1§; csc—13.

Remember that in each case there are two solutions.

5. Prove the following equations by means of a diagram :

sin 60° = sin 120°; tan 225° = tan 45°;
cos 30° = — cos 150°; cos 45° = sin 135°%;
cos 120° = — sin 30°; tan 150° = — tan 30°;
sec 40° = —gec 140°;  cot 130° = — cot 50°;
sin 210° = — sin 30°; tan 135° = — tan 45°.

6. What angle has the same sine as 35° 130° 190°
350° 47°, — 40°, — 140°, — 230° — 340°, ¢ ? What angle
has the same cosine as each of the preceding angles ? the
same tangent ? the same cotangent ? the same secant ? the
same cosecant ?

7. Draw a diagram and find the functions of 120°
(Bee § 13.)
8. Find the functions of each of the following angles:
135°, 150° 210° 225° 240° 300° 315° 330°

27. Fundamental Relation of the Trigonometric Functions.
The relations [1] to [8], which were proved in § 11 for
acute angles, can be readily shown to hold for all angles.
The proof is left for the student. For convenience of
reference they are repeated here.
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sing-csc ¢ =1. [1]
cos ¢-sec ¢ = 1. (2]
tang-cot ¢ =1. (3]
tan ¢ = %- : [4]
cot = 2> :- (5]
sin®¢ + cos?’¢ = 1. [6]
1 + tan?¢ = sec?¢. 7]

1 + cot?¢ = csc?¢. [8]

The following scheme may assist in remembering the
first three of these formulas:

sin ¢
oS ¢p——
tan ¢
cot
sec p—
cse ¢

EXERCISES
By means of the relations [1] to [8] verify the following
equations:

1. sin¢p =tan ¢ cos ¢. 4. cos ¢ =V1 — sin?¢.

. _tan ¢ — sin ¢ )
2. 81n¢_sec¢ 6. tan ¢ -—m

3. sin ¢ =V1 — cos?’¢. 6. tan ¢ =Vsecl¢p — 1.
7. cot ¢ = V1 — sin*¢ ___Gcos¢ 1
) sin ¢ V1 — cos?¢p tan¢

1
=_sm=J<m——1.
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8. Express each of the functions in terms of the sine.
9. cos’¢p — sin?¢p =1 — 2 sin?¢ = 2 cos?¢ — 1.
10. sec’¢ + csc?¢p = sec?¢p csco.
1L sin ¢ =1:|:.cos ¢
1+ cos¢ sin ¢
cos ¢ 1+xsin¢
12. n = .
1xsing cos ¢
" secptl  tang
" tan¢  secpF1
14. tan ¢ + cot ¢ = sec ¢ csc ¢.
15. sin ¢ = 4; find all the other functions analytically.
16' cos ¢ —_—— % ; €« 43 [ 113
“17. tan¢ = %; « “ “ “
18. sec ¢ — i; [13 [13 « [{1
19. sin ¢ + cos ¢ = 1.2; find sin ¢.
20. tan?¢ — sin®¢ = tan?¢ sin?é.
28. The functions of 0° 90° 180° P
270°, 360°.
P
Let P be a point on the terminal line %
of ¢ at a distance » from the origin. B o R
When ¢ =0, P coincides with the
point Py, and its coordinates are z = , F,
y= 0. Fia. 32.
sin0°=9=0, cosO°=Z=1,
r r
o _0_ o ot 0° = L
ta.nO—r—O, wtO—O—oo,
° — 1‘ p— ° = I =
sec 0 = 1, csc 0 0=
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When ¢ = 90° P coincides with P,, and its codrdinates
arex =0,y =r.

81n90°—z—1 cos90°=9—0 tan 90° = r—oo,
r r 0

cot90°—9—0 sec90°=—’—'—oo, csc 90° =~ =1,
r 0 r

When ¢ = 180° P coincides with P;, and its coordmates
arex =—r,y=0.

sin180°—9—o cos180°=_—rf=—1,

tan180°=-£—=0, cot 180° = —= = oo,
-r 0

sec 180° = — = — 1, csc 180° = = = oo,
-7 0

When ¢ = 270°% P-coincides with P,, and its coordinates
arex=0,y=—r

sin270°=:1-'=—1, cos270°=-0-=0, :
r r

tan 270° —:1=ao, cot270°=i=0,
0 —7r

sec 270°=Z=oo, ese 270° = —— = —1.
0 —-r

When ¢ = 360° P coincides with P,, and the functions
of 360° are identical with those of 0°

It is customary to prefix a double sign to the zero and
infinity values of the functions, the upper sign being that
of the function in the preceding quadrant, the lower that
of the function in the following quadrant.

The results obtained are tabulated in the first table on
the opposite page.

—— —
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sin
cos
tan
cot
sec
esc

0° 90° 180° 270° 360°
F0 1 +0 —1 F0
1 +0 -1 F0 1
F0 + F0 o F0
Foo +0 Foo +0 F oo
1 + o -1 Foo 1
F® 1 + o —1 ’ Fo

The student is now in a position to verify the follow-
ing table, which contains the functions of the eighths and
twelfths of the perigon. (See example 8, p. 41.)

sin cos tan cot sec csc

0° | F0 | +1 0 w | +1 o
30° | +4 +%~/§+§~/§ F3 +3V3 1o
45° | +4V2|1+3V2| +1 | +1 | +V2 |+V2
60° |+34V3l +4 |+V3 |+3V3| +2 |+3V3
90° | +1 | £0 | £w | £0 | £ | +1
120° |+4V3| —3 |[—V3 |-3V3| —2 [+3V3
135° |[+4V2—3V2| —1 | =1 |—=V2 |+V2
150° | +4 |-3V3|-34V3|—V3 —3V3| +2
180° | £0 | —1 | 0 | 70 | —1 | *o
210° | —4 |—4V3|+3V3|+V3 |—-3V3| -2
225° |—3V2|—4V2| +1 | +1 |—V2 |—~2
240° |—4V3| —4 |+V3 |+4V3| —2 |-3V3
2710° | =1 | 0 | +w | £0 | 3o | —1
300° |—4V3| +4 |—V3 |-34V3| +2 |-34V8
315° |—3V2|+34V2| —1 | —1 |+V2 |—V2
330° | —% |+3V3|-34V3|—V3 |[+3V2]| -2
360° F0 +1 F0 Foo +1 Foo
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29. Line Representatives of the Trigonometric Functions.
By examining the table on the preceding page we notice
that the sine changes from 0 to1 to 0 to —1 to 0 as the
angle increases from 0° to 360°. The construction explained
below enables us to study these changes more carefully.

N I
\H N

I)
Q T, Q
1/ 2 I !'- n \
L 2L ; l

& Ny T
N I N
T Ny
'
/),
I qm o’ 2 I - :nSL
N Niv

F1a. 33.

Let O be the vertex of the angle. With O as a center, and
with a radius equal to the unit of linear measure, describe
a circle. Through O draw NN' perpendicular to LL', the
initial line. At L and N draw tangents to the circle. Let
m, the terminal line of the angle, cut the circle in P, the
tangents in T’ and H, respectively. Draw PS perpendicular
to LL'. Now the lines SP, 08, LT, NH, OT, and OH repre-
sent the sine, the cosine, the tangent, the cotangent, the
secant, and the cosecant, respectively. For

sin LOP = —g% = length of SP, *.* OP = unit of length.
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cos LOP = —g% = length of 08, .- OP =unit of length.
SP LT
0P =2-="— =« L7,"OL= «
tan LO 05 — OL s
0S NH
P=— = —= L NH, '.*ON = “
cot LOP =<5 = 0N ’
orP OT
LOP = = — = “ oT, . OL = 4
see 05~ oL '
or OH
P=_—=—-—= &« OH, . ON= «
ese LO SP=oN OH,

If we agree that secants and cosecants shall be positive
when measured on the terminal line and negative when
measured on the backward extension of this line, it will
be found on examination that these lines represent the
functions in ségn as well as in magnitude. For example,
LT, the tangent, is positive in quadrants I and I1I, negative
in quadrants II and IV.

30. The March of the Functions. We will now study the
variation or march of each of the several functions as the
angle increases from 0° to 360°. As the angle increases
the point P travels in the positive direction around the
circumference of the circle. As P passes through the 1st,
2d, 3d, and 4th quadrants:

The sine, SP, increases from 0 to 1, decreases to 0,
decreases to — 1, increases to 0.

The cosine, 0S, decreases from 1 to 0, decreases from
0 to — 1, increases to 0, increases to 1.

The tangent, L7, increases from 0 to oo, changes sign

and increases from — o to 0, increases to oo, changes sign
and increases from — o0 to 0.
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The cotangent, NH, decreases from o to 0, decreases to
— oo, changes sign and decreases from o to 0, decreases
to — o and changes sign.

The secant, OT, increases from 1 to o, changes sign and
increases from — oo to — 1, decreases from — 1 to — oo,
changes sign and decreases from o« to 1.

The cosecant, OH, decreases from o to 1, increases from
1 to o, changes sign and increases from —oo to —1,
increases from —1 to — oo and changes sign.

These results are tabulated below:

0* |18t Quad.| 90° |2d Quad.| 180° lsdQuad. 270° ’nhQund.‘ 0

|

gin | 0 ' inc. 1 | deec. ﬂ:O! dec. —1! inc. }:FO
dec. |+0| dec. |—1! ine. q:o‘ ine. | 1

tan | £0| inc. |[Zoc| inec. :;:OI inc. |*oo| ine. |0

cos| 1

cot | oo dec. |+0| dec. |Foo dec. |£0! dec. |Foo

sec| 1 | inc. |*oo| ine. |—1| dec. |Foc, dec. | 1

csc |foo| dec. | 1 | ine. |koo| ime. |—1] dec. |Foo

31. Graphic Representation of the Functions. The nature
of the variations which we have just been studying may be
exhibited by the following constructions.

Divide the circumference of the unit circle into any num-
ber of equal parts. In the figure the points of ‘division are
marked 0,1,2,3 .., 12. Lay off the same number of equal
parts on a horizontal line, and number the points of division
in the same way. Make the divisions of the line approxi-
mately equal to the divisions of the circumference.

At the points 0, 1, 2, 3 on the line erect perpendiculars
equal in sign and length to the sine (SP) of the correspond-
ing point on the circle. Join the ends of these perpendicu-
lars by a continuous line. The resulting curve is the curve
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of sines. As P moves along the circle, SP changes continu-
ously, ¢.e., it changes from one value to another by passing
through all intermediate values. If now we conceive S' as

P/
° 180° z0° 3807
0 1 2 8 4 5 6 7 8 1] 11 13
. H
Fia. 34.

moving along LM, keeping pace with P, while S'P' is equal
to SP, the point P' will trace the curve of sines. Our con-
struction is an attempt to realize this conception.

. 32. If the angle increases beyond 360° i.e., if P makes
a second revolution, the values of SP would repeat them-
selves in the same order. If we plot these values, we shall
have the curve between L and N repeated beyond N, and
this curve will be repeated as many times as P makes
revolutions. The sine curve will take this form. (Fig.35.)

The student should construct the curve of cosines, the
curve of tangents, and the curve of secants in a similar
manner. To find the tangents and secants, the construc-
tion of the preceding section should be used. The sum or
the difference of two functions may be plotted. To plot
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sin ¢ + cos ¢, erect at 0, 1, 2, 3, ete., on MN (Fig. 34),
perpendiculars equal to SP + OS at the several points 0, 1,
2, 3 on the fundamental circle in that figure. The result-
ing curve will represent sin ¢ +- cos ¢.

V\J T~ I~
LN N N

FiG. 35.

Gr

Periodic Functions. Functions which repeat themselves
as the variable or argument increases are called periodic
Junctions. The period is the amount of change in the
variable which produces the repetition in the values of
the function. The sine, as is evident from Fig. 35, is a
periodic function with a period of 360°% or 2. The tan-
gent has 7 for its period.

EXERCISES

Plot the following functions and determine their periods :

1. sin ¢ — cos ¢. 4. sin (90°+ ¢).
2. tan¢ — sin ¢. 6. sin(— ¢).
3. sec¢ —tande. 6. cos(— ¢).

7. cos ¢ and sec ¢ on the same axes.




CHAPTER IV
REDUCTION FORMULAS

33. Negative Angles. The object of this chapter is to
obtain a set of formulas which will enable us to express
any function of an angle greater than
90° as a function of an angle less
than 90°.

Let A0C be a negative angle and
AO0C' an equal positive angle. Lay off
OP = OP' and draw PP'. SP'=— SP.
Let the coordinates of P be z, y, of
P=z,y. Nowx=4z,y=—y"

si1;(—¢)=%=—%=~si11¢.
cos(—¢)=§= “’—'_'= coS é.
tan(—¢) = =— % =—tan¢. [9]
cot(—¢)=§=:”;7,=—cut¢.
sec(—¢)=§= f,: sec ¢
csc(—¢)=?—:=:—1,=—cso¢

A little reflection will show that this proof is independ-
ent of the magnitude of ¢ and is therefore general. Its
61
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results may be summed up by saying that in passing from
— ¢ to ¢ the functions do not change name but do change
sign except the cosine and secant.

34. Let AOB=¢ and 40C =90°+ ¢. Lay off OP' =
OP. The two triangles OPS and OP'S' are congruent

B Y
A y‘m >
S [x7lo
Y
P,
e I
Fi16. 37.

ing algebraic signs,

(equal). Let coordinates of P
be xz, y; of P, x'y". Neglecting
algebraic signs, we have

z =y z'=y.

No matter what the magnitude
of ¢, it is obvious that we shall
always have this relation between
the coordinates of P and P'.

By definition we have, neglect-

sin (90° + ¢)=%=§=c0s4>
cos (90° + ¢)= 91—.' = ‘:{ = sin ¢.
tan(90°+¢)=;‘§=§=cot¢
cot (90° + ¢)=;—;—:=g=ta.n¢
sec(90°+¢)=£,=?1/‘= csc ¢
csc(90°+¢)=§,=£=sec¢

By studying this table (p. 53) of the signs of the functions
in the several quadrants, it appears that sin (90° + ¢) and
cos ¢ always have the same algebraic sign. For if (90° + ¢)
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falls in quadrant IV, ¢ falls in quadrant III, 11
and sin (90° + ¢) and cos ¢ are both neg- sin 4
ative. If (90°+ ¢) falls in III, ¢ falls in II, cos —
and both are negative, etc. =We conclude:
The sine of an angle in any quadrant and ::: _
the cosine of an angle in the preceding quad- .o |
rant have the same algebraic sign. e
-Cos (90° + ¢) and sin ¢ have different signs. ., _
For the sign of the cosine in any quadrant tan 4
in the table is different from the sign of the cot 4
sine in the preceding quadrant. sec —
By employing the same method of reason- ose =
. III
ing we can show that

tan (90° + ¢) and cot ¢ have different signs
cot (90° + ¢) “ tan¢g “ “ 13
sec (90° + 4,) “ cscp « “ 1
csc (90° + ¢) « secd < the same «

53

I
sin +
cos +
tan +
cot +
sec +
csC +
sin —
cos +
tan —
cot —
sec +
csc —

v

The preceding formulas (p. 52), written with the proper

S1gns, are: sin (90° + ¢) = cos ¢.

o8 (90° + ¢) = — sin ¢.

tan (90° + ¢) = — cot ¢.

cot (90° + ¢) = — tan ¢:

sec (90° 4 ¢) = — csc ¢.

csc(90°+ @)= sec ¢.

Since 180° + ¢ = 90° + 90° + &,

8in (180° + ¢) =  c0s (90° 4 ¢) = — sin ¢.
cos (180° + ¢) = — sin (90° 4+ ¢) = — cos ¢.
tan (180° 4 ¢) = — cot (90° + ¢) = tang.
cot (180° + ¢) = — tan (90° + ¢)=  cot ¢.
sec (180° + ¢) = — e8¢ (90° + ¢) = — sec ¢.
csc (180° + ¢)= sec(90° + ¢)=— csc ¢.

[10]

(1]
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Functions of 270° + ¢ are found by putting 270° + ¢
= 180° 4+ 90° + ¢. The results are tabulated below. The
student is advised to verify these results by drawing dia-
grams.

90°—¢ 90°+¢!180°—-¢ 180° + ¢ 270°—¢|270°+¢360°—¢

sin |cos ¢| cos ¢ sin ¢|— sin ¢|— cos ¢ — cos ¢|— sin ¢
cos | sin ¢|— sin ¢|— cos ¢|— cos ¢p|— sin ¢| sin ¢| cos ¢
tan | cot ¢|— cot ¢|— tan ¢, tan¢' cot 4;‘— cot ¢|— tan ¢
cot | tan ¢|— tan ¢p|— cot ¢| cot ¢| tan¢p— tanp|— cot ¢
SEeC | C8C ¢p|— CSC ¢|— secC ¢|— sec ¢p|— cSC | CsSC ¢| sec ¢
CSC | SeC ¢p| sec ¢| CSC P|— CSC ¢b|— Sec ¢|— sec ¢|— csc ¢

This table includes, beside the cases we have already
discussed, the functions of 90° — ¢, 180° — ¢, 270° — ¢,
and 360° — ¢. These are reduced as follows:
sin (90°—¢)=sin [90°+(—¢)]= cos(—¢)= cos¢, by [9]
8in(180°—¢)=sin[180°+(—¢)]=—sin(—¢)= sin¢; «
8in(270°—¢)=sin[270°+(—¢)]=—cos(—¢)=—cos ¢, «
8in(360°—¢)=sin (—¢)=—sin ¢.

The other functions of these angles are derived in a
similar manner.

35. If we inspect the table carefully, we find that it can
be summed up in the two rules that follow :

1°. If 90° or 270° is involved, the function changes name
(from sine to cosine, from tangent to cotangent, from secant
to cosecant, and vice versa), while if 180° or 360° is involved
the function does not change name.
The second rule has to do with the algebraic sign.
When we write
cos (90° + ¢) = —sin ¢,
tan (180° — ¢) = — tan ¢,
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both terms must have the same sign. If ¢ is less than 90°,
sin ¢ is positive and cos (90° + ¢) is negative. The equality
is secured by putting the minus sign before sin ¢. Since
these formulas are general, the signs are the same, no matter
what the value of ¢. Our rule is then:

2°. Assume that ¢ is less than 90° and make the signs
of both terms alike.

36. Applications. Any angle greater than 90° can be
expressed in two of the following forms:

90°+ ¢, 180° — ¢, 180°+ ¢, 270°— ¢, 270°+ ¢, 360°— ¢,
where ¢ is less than 90°.

Eyg., 200° = 180° + 20°, or 270° — 70°.
300° = 270° + 30°, or 360° — 60°.
135° = 90° + 45° or 180° — 45°.

The functions of 200° are :
sin 200° = sin (180° + 20°) = — sin 20°.
cos 200° = cos (180° + 20°) = — cos 20°.
tan 200° = tan (180° + 20°)=  tan 20°.
cot 200° = cot (180° + 20°)=  cot 20°.
sec 200° = sec (180° + 20°) = — sec 20°.
esc 200° = csc (180° + 20°) = — csc 20°.

They may also be written :
sin 200° = sin (270° — 70°) = — cos 70°.
cos 200° = cos (270° — 70°) = — sin 70°.
tan 200° = tan (270° — 70°)= cot 70°
cot 200° = cot (270° — 70°)=  tan 70°
sec 200° = sec (270° — 70°) = — csc 70°
ese 200° = cse (270° — 70°) = — sec T0°
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EXERCISES

1. Express the following functions as functions of angles
less than 90°: tan 130°, sin 160° cos 100°, cot 215°, sec 260°,
esc 280°, sin 310° cos 310°.

2. Express each of the preceding functions as the func-
tion of an angle less than 45°.

3. Express each of the following functions as the func-
tion of an angle less than 45° l:: "zr:l

27, tan 37, 00827, see L7, cot 3T, cse 117,
sm3,an4:csﬁ,se 37 3’8 6

4. By using formulas [9] express the following functions
as functions of positive angles less than 90°:
sin (— 160°), cos(— 30°), tan(— 300°), sec(— 140°),
cot (— 240°), cse(—100°), sin(— 300°).
5. The angle — ¢ is obviously congruent to 360° — ¢,

and their functions are identical. Reduce the functions in
problem 4 by making use of this identity.

6. Express the following functions as functions of angles
less than 45°:

cos 117° 17!, sin 143° 21' 16", tan 317° 29' 31",
cot 90° 46' 12", sec(— 135° 14' 11"), cos(— 71° 23").




CHAPTER V
THE ADDITION FORMULA

37. Projection. The projection of a point on a line is the
foot of the perpendicular from the point to the line.

The projection of a line-segment on a given line in the
same plane is the portion of the second line bounded by
the projections of the ends of the first line.

D
A
Al
i B
A
s i D
cr 2
B
FiG. 38. .

The projection of AB is CD in I, II, and III, and 4D
in IV.
B D

A E R i

R

i : i i A ?

. P % c |

Y é; é/ b, z Y bl é/ B
Fia. 39. F1a. 40.

The projection of a broken line is the sum of the projec-

tions of its parts.
67
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The projection of ABCDE (Fig. 39) is A'B' 4 B'C' 4+ C'D'
+ D'E'=A'E'; and the projection of ABCD (Fig. 40) is
A'B'+ B'C'+ C'D'=A'D". (See § 19.)

It is obvious that the projection of a broken line is equal
to the projection of the straight line connecting the ends
of the broken line. It is to be noted that here we take
the direction of the lines into account. The projection of
ABCD (Fig. 40) is equal to the projection of AD, and is
the negative of the projection of DA.

38. The projection of a line-segment on any line in its
plane is equal, in length and direction, to the length of the
segment multiplied by the cosine of the angle which the
segment makes with the line. In the figure the line-seg-
ment is- AC, the line of projection is LM, and the angle,
measured according to § 20, is ¢.

c 0\@\
4 B = <
I c il
L—p oML M
A
B A C B
c 11 v o
L2 L L M
FiG. 41.

The projection of AC is A'C' = AB.
AB
Now cos¢=A—é- . AB=A'C'= AC cos ¢.
The projection is positive when ¢ is an angle of the 1st
or 4th quadrant; it is negative when ¢ is an angle of the

2d or 3d quadrant.
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39. Projection dn Cobrdinate Axes. The projections of 4C on
XX'and YY' may be called the z-projection of 4C and the
y-projection of AC. Let ¢ be

the angle which 4C makes with € Y /0
XX'. Draw OD parallel to AC. R A
¢ = XOD, ..YOD = ¢—90°

/

If ¢ is less than 90° as in the X o X
case of A'C', the angle YOD' is
negative and equal to 90° — ¢.

But — (90° — ¢) = ¢ — 90°. Y

In any case the angle which . 42.

AC makes with YY' is 90° less than the angle it makes
with XX"

’

x-projection of AC = AC cos ¢.

y-projection of AC = AC cos(¢p — 90°)
= AC cos (90° — ¢) by [9]
= AC sin ¢.

40. The Addition Formulas. These formulas enable us to
express the functions of the sum or the difference of two
angles in terms of the functions of the constituent angles.
Without examining the matter, the student might make the

mistake of writing :
Q sin (¢ + 6) = sin ¢ + sin 6.
tan (¢ + 6) = tan ¢ + tan 6, etc.

In the accompanying figure the
points F and C, on the terminal lines
of ¢ and 6, respectively, are taken
AL on the circumference of the unit

circle. We have, therefore, in line
representatives (see § 29):

Fi1a. 43.
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sin ¢ = AF, sin § = EC, sin(¢ + 6)= BC.
tan ¢ = LT, tand= FD, tan (¢ + 6) = LQ.

It is evident that AF 4+ EC > BC,

or sin ¢ + sin 6 > sin (¢ + 6),
and LT+ FD LQ,
or tan ¢ + tan 6 < tan (¢ +6).

Since the formulas fail in this particular case, they are
obviously untrue.

41. The Sine and Cosine of ¢ + 0.

N Y
Y

N Q M

4 .

M

P o
9 L ¢ R- L
lo I \R ° N

Fi1a. 4.

Let LOM = ¢ and MON =6, then LON = ¢ + 6.
InI, ¢+ 6 < 90°; in II, ¢ + 6 > 90°; in both, ¢ < 90°,
6 < 90°.
Through P, any point in OM, draw RPQ perpendicular
to OM.
Angle LRQ = 90 + ¢, being the exterior angle of the
triangle OPR.
Since 0Q is a line connecting the extremities of the
broken line OPQ, we have, by § 37:
y-projection of 0Q
= y-projection of OP + y-projection of PQ, [12]
z-projection of 0Q
= g-projection of OP + x-projection of PQ. [13]
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Applying § 39, these equations become:
0Q sin (¢ + 6) = OP sin ¢ + PQ 8in (90° + ¢), [14]
0Q cos(¢ + 6)= OP cos ¢ + PQ cos(90° + ¢). [15]
But OP = 0Q cos §, PQ = 0Q sin 6.
8in (90° + ¢) = cos ¢, cos(90° + ¢) =— sin ¢.
Substituting these values in [14] and [15], we have
0Q sin (¢ + 6) = 0Q sin ¢ cos § + 0Q cos ¢ sin 6, [16]
0Q cos (¢ + 6) = 0Q cos ¢ cos § — 0Qsin ¢ sin 6. [17]
.. sin (¢ + 6) =sin ¢ cos @ + cos ¢ sin 6, (183 .
cos (¢ + 6) = cos ¢ cos § — sin ¢ sin 6, [19]

where ¢ and 8 are both less than 90° (-”25>

42. To establish the truth of these formulas where ¢ and
0 are unlimited we proceed as follows:
Let ¢ = 90° + B, where 8 < 90°.
sin (¢ + 60) =sin (90°+ B+ 0) = cos (8+6), [20]
cos (¢ + 6) = cos (90° + B+ 6) = — sin (B +6). [21]
Since B8 and @ are each less than 90°,
sin (¢+06) = cos(B+6)= cosBcosf —sinBsin b, [22]
cos (¢ + 6) = — sin (B + §) = — sin B cos § — cos B8 sin 6. [ 23]
But sin 8 =sin (¢ — 90°) = — s8in (90° — ¢) = — cos ¢,
cosfB=cos (¢ —90°)= cos(90°— @)= sin ¢.
Substituting these values in [22] and [23],
sin (¢ + 6) = sin ¢ cos 6 + cos ¢ sin 6, [18]
cos (¢ + 6) = cos ¢ cos 6 — sin ¢ sin 6. [19]

Here ¢ is an angle of the 2d quadrant, 6 an angle of the
1st quadrant. By a repetition of this process we can show
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that [18] and [19] hold when ¢ is of the 3d quadrant, ete.
Treating 6 similarly, we prove these formulas true for all
positive values of ¢ and 6.

43. They also hold when one or both the angles are
negative.
Let ¢ = 8 — 90° where 8 < 90°.
sin (¢ + 6) = sin (8 —90° + 6)
= — sin (90° — 8 — ) = — cos (8 + 0), [24]
cos (¢ + 0) = cos (8 — 90° + 6)
= ¢o8(90°—B8—0)= sin(B+0). [25]
Since B and 6 are positive,
8in (¢ + 6) = — cos (8 + 6) = — cos B cos 6 + sin B sin §, [26]
cos(¢p+0)= sin(B+6)= sin Bcosd+ cosBsiné. [27]
But sin B8 = sin (¢ + 90°) = 4 cos ¢,
cos B = cos (¢ + 90°) = — sin ¢.
Substituting these values in [26] and [27],
sin (¢ + 6) = sin ¢ cos 6 + cos ¢ sin 6, [18]
cos (¢ + ) = cos ¢ cos § — sin ¢ sin 6. [19]
A similar process of reasoning would show that these for-
mulas remain unchanged when both ¢ and 4 are negative.
They are true for all positive and negative values of ¢ and 6.
These formulas are so important that they should be

carefully memorized. They may be translated into words
as follows :

I. The sine of the sum of two angles is equal to the sine
of the first into the cosine of the second, plus the cosine of
the first into the sine of the second.

I1. The cosine of the sum of two angles is equal to the
product of their cosines minus the product of their sines.
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44. The sine and the cosine of ¢ — 6.
Putting — 6 for 6 in [18] and [19], we have
sin (¢ — 6) = sin ¢ cos (— 6) + cos ¢ sin (— ), [28]
cos (¢ — 0) = cos ¢ cos (— 6) — sin ¢ sin(— ). [29]
But sin (— ¢) = — sin ¢, cos (— ¢) = cos ¢.
Substituting these values in [28] and [29], we have
sin (¢ — 0) = sin ¢ cos § — cos ¢ sin 6, [30]
cos (¢ — 0) = cos ¢ cos 6 + sin ¢ sin 6. [31]
Formulas [18] and [30], and [19] and [31], may be com-
bined as follows:
8in (¢ & 6) = sin ¢ cos § % cos ¢ sin 6, [32]
cos (¢ £ 6) = cos ¢ cos 6  sin ¢ sin 6. [33]
It should be noted that in [32] the double sign in the

second member is like the double sign in the first member,
while in [33] it is unlike.

45, Formulas [18] and [19] are so important that other
geometrical proofs are added.

Q
D P
E/RD/N
B o A C L
I 1I
Fi1G. 456.
Let LOM = ¢ and MON = MON' =6,

then LON=¢+ 6 and LON'=¢ — 0.
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Through P, any point in OM, draw QPR perpendicular to
OM. Draw PA, QB, and RC perpendicular to OL. Draw
PD and RE parallel to OL.

£ DQP =L EPR = ¢, since their sides are perpendicular
to LO and OM.

_AP_DP_ER . _04_QD_EP
SN =0Fr=eF PR °“®*=0p " oP PR
_PQ_PR _op_op

sin 6 0Q oR’ cos 0 00— OR
BQ AP+ QD
sin (¢ + 6) =55=—0Q—'
AP QD _ AP OP QD QP
0@ T 0q " oP 0q " qP 0q
= s8in ¢ cos 6 + cos ¢ sin 6. [18]
OB O0A — DP
cos($+0) =go=""go—
04 _DP_04 OP DP QP
T0Q 0Q OP 0Q QP 0Q
= co8 ¢ cos § — sin ¢ sin 4. [19]
RC AP —EP
sin(¢ —0) = p=""pr—
_AP_EP_ AP OP_EP PR
T OR OR OP OR PR OR
= sin ¢ cos § — cos ¢ sin 6. [30]
R
cos(¢ 0)_00 OA + E

OR

_9_4_+ER 04 OP  ER PR
“ORT OR_ 0oP OR " PR OR

= ¢08 ¢ cos 6 + sin ¢ sin 6. [31]
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46. Still another proof of [18] and [19] is given below.
Construction. Lay off 04 = unity. Draw 4B and AQ
perpendicular to OM and ON, respectively. Draw BC per-
pendicular to ON. Draw AD perpendicular to BC.
Z ABD = 0; their sides are perpendicular.
Let sin ¢, cos ¢ = 8y, ¢,

sin 6, cos 0 = s, c,.

Fi1G. 46.

The lines in the figure evidently have the lengths indi-
cated. For example, BC = ¢,s,, etc.

sin (¢ + 0) =%§-=AQ=CD=Bl)-}-CB:slc,+cls2
=sin¢ cosf+cospsinf. [18]

cos(p +6) = %%= 0Q = 0C — AD = ¢,6, — 818,

= cos ¢ cos 6 — sin ¢ sin 6.

47. Tangent and Cotangent of ¢ + 0 and ¢ — 6.

sin(¢ + 6) _ sin ¢ cos § + cos ¢ sin

cos(¢ +0) cos ¢ cos — sin ¢ sin 6
¢f. [4], [18], [19]

tan(¢ +6) =
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Dividing both numerator and denominator by cos ¢ cos 6.

we have
__tan¢d+tanf
tan(¢ +0) = 1 —tan ¢ tan @ [34]

Other forms for tan (¢ + ) may be found by dividing
by sin ¢ sin 6, sin ¢ cos 8, cos ¢ sin §, instead of cos ¢ cos 6.
Find them. Why is [34] preferred ? In like manner we
find
_ o _8in(¢—0 tang—tanf )
tan (¢ 0)—cos(¢—0)—1+tan¢ta-n9 [38]

Nore. [36] might be obtained from [84] by putting — ¢ for ¢.
Verify this statement.

Similarly
_cos(¢p+0) cosgcosd—singsing
oot (¢ +6) " sin(¢ +6) sin¢ cos § + cos ¢ sinf

Dividing numerator and denominator by sin ¢ sin 6; we
tave

t ¢ cot — 1
cot(¢ + 6) = cﬁ—&%m' [36]

In like manner

cot (¢ — 6) _cotpcotf+1

" “cot@—cot ¢ [37]

Find other forms for [36] and [37] by dividing by cos ¢
cos 0, by cos ¢ sin 6, by sin ¢ cos 6, instead of by sin ¢ sin 6.

EXERCISES
1. Deduce [36] and [37] from [34] and [35] by using [3].

2. Deduce [36] and [37] from [34] and [35] by substi-
tuting (90 + ¢) for ¢ in the latter.

3. Prove
sin (¢ + 6) sin (¢ — 0) = sin®*¢ — sin?0 = cos?6 — cos?¢.
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4. Prove :
cos (¢ + 0) cos (¢ — 0) = cos®¢ — sin?@ = cos?d — sin?¢.

5. Find formulas for sec (¢ + 6), sec (¢ — 6), csc(¢p + 0),

csc (¢ — 6) in terms of the secants and cosecants of ¢ and 6.

6. Find the sine of 75°.

sin 75° = sin (45° + 30°) = sin 45° cos 30° 4 cos 45° sin 30°

=3V2-4V3+4V2-4 (p.18)
=}(V6 +V?2).

7. Find the other functions of 75°.

8. Find all the functions of 15°. (15° = 45° — 30°.)

9. Find all the functions of 180°. (180° = 90° 4 90°.)
10. Find all the functions of 135°% (135° = 90° + 45°)
11. sin ¢ = 4, sin § = §; find the functions of ¢ + 6 and

¢ —0.
12. Provesin—lz +sin~ly=sin"!(z V1 —y2+y V1 — 7).
13. Prove .
cos~ 'z + cos™ly = cos~ ! (wy — m)
xty,
1—ay

14. Prove tan~ %z 4 tan—!y = tan—!

48. Functions of Double Angles. If we put 6§ = ¢ in for-
mulas [18], [19], [34], and [36], we shall have

sin (¢ + ¢) = sin ¢ cos ¢ + cos ¢ sin ¢.
*.8in 2 ¢ = 2 sin ¢ cos ¢. [38]
cos (¢ + ¢) = cos ¢ cos ¢ — sin ¢ sin ¢.
cos 2 ¢ = cos’¢p — sin’p :
= 2 cos?¢ — 1, since sin’¢p = 1 — cos?¢p lf [39]
=1 — 2sin%¢, “ cos’ =1 — sin’¢p. III
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_ tané+tang
ta“(4’+¢)—1—tan¢tan¢

_ 2tan¢ :
cot 2 ¢ = %%:;1 [41]
EXERCISES

1. Given the functions of 30° find those of 60° of 120°,
of 240°.

2. Given the functions of 45° find those of 90° of 180°,
of 360°.

Prove the following :

9
3. ﬂ=cos2x. 4. tanx + cot x =2 csc 2.
seckr
5. (sinz £ cosx)?=1+tsin2x.
2tanx . 1+ tan’c
6. m-stz. Cf.[40] 7. l_tan,x—sec 2.

8. Find formulas for sec 2  and csc 2 6.
9. 2sin(45° + ¢) sin (45° — ¢) = cos 2 ¢.

49. Functions of Half-angles. If in III and II of [39]
we substitute 4 ¢ for ¢,
cos ¢ =1 — 25sin?} ¢.
cos ¢ =2cos?4 ¢ — 1.

cosing = i\/l_%”’. [42]

woig= sV TEHE
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By formula [4]-
tan§ ¢ = \/L:Tcg:i 1
= 1_‘;:%# IT ¢ [44]
= %- 111 J

II is derived from I by multiplying numerator and
denominator by 1 — cos ¢; while

III is derived from I by using 4 cos ¢ as multiplier.
By formula [3]

1
ot =N1T s 11

_ sing

=T o0s d IT » [45]
_1+cose I

T sin¢
EXERCISES

. Given the functions of 60° find those of 30° of 15°
. Given the functions of 45° find those of 22° 30"

1

2

3. Given sin ¢ = 4, find the functions of g
4

. cos8 ¢ = z; find the functions of .

2
Verify the following:
1+secd <3
5. oo d s - 2 cos 2

6. cos’%(l + tan %)2= 1 + sin ¢.

7. csca:—cot:c:ta.ng-

2
8. sin’%(cot%— 1) =1 —sinax.
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50. Functions of Three Angles.
sin(a+ B+ y)=sin(a +B8+7)
= gin (a + B) cos y + cos (a + B) sin y
= (sin a cos B8 + cos a sin B) cos y
+ (cos a cos B — sin a sin B)sin y
= sin a cos B cos y + cos a sin B cos y
+ cos a cos Bsin y — sin a sin Bsin y. [46]
Similarly
cos(a + B+ y) = cosacos Bcos y — sina sin 8 cos y
— 8in a cos B sin y — cos a sin B sin y. [47]
tana + tan 8+ tany — tanatan Stany
1—tan Btan y— tan ytana—tanatan g

tan(a+ B+ y)= - [48]
Formula [48] may also be obtained by dividing [46] by
[47], and then dividing numerator and denominator by cos a
cos 3 cos y.
If now in [46], [47], and [48] we put 8=y =a, we
shall have
sin 3a = 3 cos’a sin a — sin’a

= 3 sin a — 4 sina. [49]
cos 3 a = cos®a — 3 sin%a cos a
= 4 cos®a — 3 cos a. [50]
3tan a — tan®a
tan3a——-1_3tm,a . [51]
EXERCISES

1. Put the last six formulas into words.

2. Find the sine, the cosine, and the tangent of a +8—y,
ofa—pB—y.

3. Find the cotangent of a + 8+ y in terms of the
cotangents of the constituent angles.
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4. Find sin 3 ¢ by developing sin(2 ¢ + ¢) by formula
[18] and simplifying the result.

5. Find sin 4 ¢ by putting 2 ¢ for ¢ in [38].

6. Deduce formula [47] from [46] by putting 90 4+ a
for a.

7. Find cos 4 ¢.

8. Find sin 5 ¢ and cos 5 ¢.

9. Given the functions of 30° find those of 90°.

51. Conversion Formulas. By adding and subtracting [18]
and [30], and [19] and [31], we have

sin (¢ + )+ sin (¢ — )= 2 sin ¢ cosd.
sin (¢ + 0) — sin (¢ — )= 2 cos ¢ sin 6.
cos (¢ + 60) + cos (¢ — 0)= 2 cos ¢ cos 6.
cos (¢ + 6) — cos (¢ — ) = — 2 sin ¢ sin 6.
Putting (¢ +0)=a, (¢ — =5
whence ¢=14%(a+ B), 6 =4%(a — B), we have
sina +sin 8= 2sin4(a + B) cos(a — B), [52]
sina—sinB= 2 cos}(a+ B) sin§(a — B), [53]
cosa+cosB= 2cos}(a+ B) cosy(a—B), [54]
cosa — cos B =— 2 sin §(a + B) sin §(a — B). [55]
These formulas enable us to express thé sum or the
difference of two sines or two cosines as a product.

EXERCISES
1. Express the last four formulas in words.
Verify these formulas when
2. a=60° B =30° 4. a =180°% B= 90°
3. a=190° B =60° 5. a=270° B =180°
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Verify the following identities :

8 sina+sinf8 té.n}(a +8.
" sina—sin B tan(a — B)
sin @ + sin 8
cosa + cos B

%:—c&i(a+ﬂ)cot}(¢—p)_

9. sin 60° + sin 30° =-2 sin 45° cos 15°.
10. sin 40° — sin 10° = 2 cos 25° sin 15°.
11. cos 75° + cos 15° = 2 cos 45° cos 30°.

12. sinbx +8in 3x =2 sin4 x cos .

= tan § (a + B).

8.

sin3z +sin2zx x
13. + = cot -

cos2z—cos3x 2

14. cos (60° + x) + cos (60° — x) = cos .
15. tan 50° 4 cot 50° = 2 sec 10°.

16. sin2 cos—lz =22 V1 — 2

17. cos 2 sin"le =1 — 22

18. cos 2cos~ 'z =222 — 1.

2% .
1— 22

20. tan~'x + tan—'y = tan—! f——ia:z (Take the tangent
of both members.) Y

19. tan 2 tan—lz =

. o™
21. sin— 'z + cos~lx = 3

22. sin—!z 4 cos~ly = sin~!(xy +\/m__ﬂ)
Sm
-
24, tan—!'} = tan—1} + tan—'}.

23. tan~'4 + tan—!'4 = %, or Cf. example 20.

< T=tan—'y + tan—'f + tan'}.
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52. Trigonometric Equations. Trigonometric equations
are generally best solved by expressing all the functions
involved in terms of some one function and solving the
resulting equation.

Illustrations. 1. sin ¢ = tan ¢. .
., _sin¢ . I T Y
sin ¢ = wosd . 8in ¢<1 s ¢)—0.
..8in¢g =0, and cos¢=1.
¢ =0 and , ¢ =0.
The solutions are therefore ¢ = 0, =

2. tan ¢ = csc ¢.
sing
cos¢ sing¢

cos?’¢p +cosp=1,
cos¢\=1}(—1:l:\/5,
¢ = cos—1}(— 1 £V5);
but since 4(—1 —\/5) is numerically greater than unity,
this solution is impossible; and

¢ =cos—1}(—1 +V5).
3. sinf+ cos 6 =1.
sin 6 +V1 — sin?0 = 1.
1 —sin?d = (1 — sin §)2
(1 — sin 6)? — (1 — sin?@) = 0.
(1—sinf)(1—sinfd —1—sinf)=0.
(1 —sind)(—2sin )= 0.
~.8inf=1 and 0.

s sin’¢ =cos ¢, 1 — cos?¢p = cos ¢,

mw
0=—5 0, m.
2 )

The solution § =7 does not satisfy the original equation.
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EXERCISES

Find the values of ¢ that satisfy each of the following
equations: 7

1. co82¢ +cosp=0. 6. tan ¢ + cot ¢ = 24.

2. tan ¢ = n cot ¢. 7. cot § = 2 cos 0.

3. sec ¢ — tan ¢ = co8 ¢. 8. tan ¢ + cot p = m.

4. sin ¢ + cos ¢ = tan ¢. 9. tan ¢ + sec ¢ = a.

5. 3sin6 + 4cos 6 =b.

1.

10. If sin 6 + cos § = a, then sin 2 § = a% — 1.

11. lcos @+ m sin =0, find tan g

MISCELLANEOUS EXERCISES
From sin 30° = cos 60° = 4, cos 30° = sin 60° =4 V3,

sin 45° = cos 45° = 4 V2, find all the functions of 15° of
75° of 105°.

2.

From sina =4, sin 8 =§, find all the functions of

a+pB and a —B.

Prove the following:

3.

sin (¢ + b)+ sin (@ — )

cos(a +b)+cos(a—b) tan a.

sin(@8) _ o+ tan b,
cos @ cos b =

c<')s 2 b)=cotaj:tanb.
sin @ cos b

tanz +tany _sin(z +y)
tanz — tany  sin(z — y)
l—tanztany cos(z+y)
1+tanztany cos(z — )
cot ¥ + cotx
coty — cotz

= osc (& — y) sin (z + y).




10.

11.

12.
13.
14.
15.

16.

17.

18.
19.
20.
21.
_ 22.

23.
24,
25.

26.

27.
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tanzcoty +1 _sin(z+y)
tanzcoty — 1 sin(z — y)

sin (x + y)sin (x —

Y _ -
coskr cosly = tan’z — tan’y.

tan’%x — tanly
1— tan%x tan?y

V2 sin (« + 45°) = sin a * cos a.

sin (x + y) cos € — cos (x + ) sin ¢ = sin g.

= tan (x + y) tan (x — y).

sin (x — y) cos y + cos (x — y) sin y = sin .
cos (x + y)cos x + sin (x + y) sinx = cos y.

tan(zx —y)+tany  tan(x + y)—tany
1—tan(z —y)tany 1+ tan(x +y)tany

2 8in (45° + a) cos (45° — b) = cos (a — b) + sin (a + ).
Cf. exercise 12.

2 sin (45° — a) cos (45° + b) = cos (@ — b) — sin (a + b).
2 8in (45° 4 @) cos (45° + b) = cos (a + ) + sin (a — 0).
2 sin (45° — a) cos (45° — b) = cos (a + b) — sin (a — D).
tan z = §, tany = }; find tan (z + ) and tan (x — y).
tan ¢ = 3, tan y = §; find tan (x + y) and tan (x — ).

= tanx.

tanx = k, ta.ny:%; find cot (x + y) and cot (x — y).
o Cotz—1 _f1—sin2x 1—sgin22
@A) = otz + 1 VItem2a

cos2x

cotx+1 tanzx+1
1—cotx tanz—1
tan (z 3 45°) + cot (z = 45°) = 0.

cot (x — 45°) =

s coty=2m + 1;
find tan (x + y) and cot(z — y).

tan x =

m
m+1
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1 —-tanztany
28. = ° T ———————— @
Ifm-}—y-fz 90°, then tan z tanz +fany
29. sinTx — sin 52 = 2 sin x cos 6 x.
30. cosbx+cos9xr=2cos7xcos2zx.
31. cosx —cos2x = 2sin § xsin .
33, sm2x—-smz=cot%x.
cosx — cos2x
sin3z —sin2x 5z
33. cos2x-—cos3z—00t_2_'
sinz +siny cosz+cosy
cosx —cosy siny —sinz

[ g v .
35. cos(g—z)—cos(g+x)—smx.

36. cos (% + x) + cos (%- — .1:) = cos z.V2.

Express each of the following products as the sum or
difference of two trigonometric functions:

34.

37. 2sinx cos y. 40. 2s8in3xzcos 5.
38. 2 cosx cos y. 41. 2 cos (x + y) cos(x — ¥).
39. 2s8in2xcos3y. 42. 2 cos §xcos §x.

43. 2sin 50° cos 10°.

44. 2 cos = gin —.
X 08 7 sin 75

Simplify :
45. 2cos 3z cosx — 2s8in 4« sin 2 2.
cosx — CcoSdx

46. — n .
sinz 4+ sin bz

gin3x —sinx s8in3z—sinx
cos3x +cosx cos3x — cosx

47.

(sin4z — sin 2z) (cos x — cos 3x)
" (cos4 x + cos 2z) (sin z + sin 3 )
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Verify :

49.

50.

51.

52.

. 63.
54.

56.

bé.

67.
b8.

59.

60.

61.

62.
63.

64.

65.
66.

cosz+cos3x _co82z
cos3z+cosbax cosdx

ety . z—y  2siny
tan —5 tan =5 " cosx+ cosy
2sin2xcosx + 2cosdxsinx =sin5x + sin z.
csclx = 560 2
csekx — 2 .

cos?z (1 — tan?z) = cos 2 z.
cot x — tan z = 2 cot 2 x.

cos2x _1—tanx
1+sin22 1+ tanz

cos’z + cos’(g + x) + cos¥(m +x)+ cos’(%lr + x) =2.

sinz+sin3x + sin 52 + sin Tx =4 sin4 x cos 2 z cos x.
cos = + ¢o8 (120 + x) + cos (120° — x) =0.

sin3x cos3zx

sin x cos ¥
cos3x sindzx
——— 4+ ———=2cot 22.
sin x cos =
sinfx cosdx
—— ————=4co8 2.

sin cos x

tan x = }, tan y = f;; find tan (2 + y).

sin(y+z —x)+sin(z+x—y)+sin(@z+y —2)—
sin (xz + y + 2) =4 sin z sin y sin 2.

cos(y+z—z)+cos(z+x—y)+cos(x+y—=z)+
cos (x + y + #) = 4 cos x cos y cos z.

sin 2 sin(y — #)+ sin y sin(z — )+ sin 2 sin(z — )=0.

cosx sin(y — #)+ cosysin(z —x)+ cos z sin(z — y)=0.
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67.
68.

69.

70.

71.

T2.

73.

74.

75.

76.

7.

78.

79.
80.
81.

82.

83.

84,
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cos x cos(y — z)— 8in y sin(z — x)— cos 2 cos(z — y)=0.

sinz cos(y — )+ cos ysin (2 — &) — sin z cos(x — y)=0.

3 _
cot™ (x — y) —cot~! (x + y) = cot™! a:_yi_l)

2y
@ a1l 1
tan —1 tan 2 tan oa
-\/ — 2
2 sin~!a = tan™! ?_a___l‘_a.
1—2a?
-1 1 _lagl—b’2+2b.
tan—'a + 2 tan—') = tan 1% —%ab
2 _
tan—la + cos™! 1 = sin—! g_—}-\/a—_l
a : aVvVai+1

costz — sin*x = cos 2 x.

sin®(x + y) — sin?(z — y) =sin 22 sin 2 y.

(sin  — sin y)® + (cos  — cos y)* = 4 sin’x;y-
14+sinx—cosz
1 +sinx +cosz

tan « + tan y
cot x + cot y

(sin ¢ + sin #)(sin ¢ — sin ) = sin (¢ + 6) sin(¢ —6).
(V1 4 sina—V1 —sina)? =4 sin’{a

tan 4 .

=t tan « tan y.

(V1 +sina +V1 —sina)? = 4 cos }a.

’ 2
sec2a+ta.n2a+ 1—-m
. 8in (30° + 4) — s8in (30° — 4)
siln 4 = .
V3
1 1
cot (z +y)=

ta.nx+ta.ny—cot:c+coty




CHAPTER VI
THE TRIANGLE

53. The object of this chapter is to study the relations
between the sides of a triangle and the trigonometric func-
tions of its angles. Other properties of the triangle are
also considered.

NOTATION

A4, B, C = the vertices of the triangle.
a, b, ¢ = the sides opposite 4, B, C, respectively.
a, B, y = the interior angles at 4, B, C, respectively.
s = §(a + b + ¢), the semi-perimeter.
R, »r = the radii of the circumnscribed and inscribed

circles.
T4y 75y 7. = the radii of the escribed circles opposite 4, B, C,
respectively.

Pa Pr P. = the altitudes from 4, B, C to a, b, c.
K = area of the triangle.

MEMORANDA
a+pB+y=180°=m.
oBy=m—B+y),T—(y+a)mT—(a+p8).
1 1
b 4R ty=F - 3B+N g 10 +a 5@ +h. .
sin a, 8in B, sin y = sin (8 + ), sin(y + a), sin(a + B).

cosa, cos B, cos y = —cos (B + y), —cos (y +a), — cos(a + B).
79
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tan a = — tan (8 + y), ete.
cot a = — cot (B + v), ete.
sin4a= cos&(ﬁ+7),etc.
cos § a =+ sin §(B + y), ete.
tan 4 a = + cot $ (B + y), ete.
cot 4 a =+ tan (B + v), etc.
2K=ap,=0bp,=cp.=2rs.
b+c—a=2(s—a)
c+a—b=2(s—-0b)
a+b—c=2(s—e¢)

54. The Law of Sines.
In either figure, let AE = ¢, then, § 19, EB = AB — AE.

.. b ¢
Slmﬂo.rly si_n/-s_—siny
&b __c [56]
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This is the law of sines. It may be stated in words as
follows: The ratio of the side of any triangle to the sine
of its opposite angle is constant.

Let us denote this constant by 47. The formula becomes

a b c
sina sinB siny AL (571
55. The Law of Tangents. From [57],

a b a sina,

m = m: or Z = m’
by composition and division
a+b=sina+sinﬂ
a—?b sina—singf
i (ot s g W0
_tang(a+p) .

"~ tan}(a—B)
Letb_tang(a+p) _ cotyy (58]
a—b tani(a—pB) tani(a—p)

If bis greater than a we can avoid negative signs by
writing 4 — a and B — a instead of @ — b and a — B.

Similar formulas may be derived involving & and ¢, and
c and a.

This is the law of tangents. In words it is: The ratio
of the sum of any two sides of a triangle to their differ-
ence is equal to the ratio of the tangent of one-half the
sum of the opposite angles to the tangent of one-half
their difference.

56. The Law of Cosines. From Fig. 47,
a’=(c— 1)’ +p p’l = —q"
Cal=(—¢)l+ ¥ —=0+ct—2¢q
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But ¢ is the projection of 4 and, therefore,
g =bcosa.
Substituting in the preceding equation,
a?="5b%+4+¢2— 2 bc cosa.
Similarly b = c? + a® — 2ca cos B. [59]
¢ =a?+b%—2abcosy.
Solving for cos a, etc., ot ot \
+cl—a ’ .
cosa=——p—" [60]

This is the law of cosines.

57. Functions of the Half-angles in Terms of the Sides.
Substituting 4 a for ¢ in [397 III,
cosa=1—2sin?} a.
2sin’4a=1—cosa

2 02—' 2
=1J’——+—2Iw—“- by [60]
_at— (B4 c*— 20c)

- 2bc
_at—(b—c)?

2be
_(a+db—c)(a—b+0)

- 2 be

_2 (s_; Z,s—b - (See Memoranda.)
c.singa= ("’;blﬁul [61]

be
Similarly
. (s—ec)(s—a)
sin4 B = : [61]

ca

sin gy = \/@;“P [61]
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Substituting 4 a for ¢ in [39] II,
cosa=2cos?}a—1.

2cos*ta=1+4cosa
b’+c*—af"

=1+ %%

_Z2be+ 42— a?
- 2be

(bt —d?
- 2 be

_(+ec+a)(bt+ec—a)
- 2 be

_ Mgba__;‘). (See Memoranda.)

..co8ta= \/s(sb—;a).
cos 4B = \’% [62]
cos 1}7=\,s—(':;—6)- J

Dividing [61] by [62],

Since § a, § B8, 4+ y < 90°, the functions of these angles
are positive and the radicals in [61], [62], [63] are also

positive.
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EXERCISES

Verify the following relations :

L fzms&‘ﬁcosiz_ 2 s—a,=oosi}asin\}y.
a sinta b cos 4 8
s—a sin§Bsingy

3. = - -

a sinda

4. cosa + cos B cos y = sin 8sin y.
5. acos B+ b cosa=c.
ccosa+tacosy=>h.
ccos B+ bcosy=a.

aﬂ_bi

6. acosB—bcasa=

7. acos Bcosy+ bcosycosa 4 ccosacosf

=4 [acos a+ bcos B+ ¢cos y]

= a sin Bsin y = b sin y sin @ = ¢ sin @ sin B.
8. asin(B—y)+bsin(y —a)+csin(a — B)=0.

58. Circumscribed and Inscribed Circles.

Circumseribe the circle O about the triangle 4 BC. Draw
CD, a diameter. Angle a = angle D. (Fig. 48.)

sina sinD—i—i
- “CcD 2R
a b c

=——=——=——=»M 4
sina sinf siny A [64]

Inscribe the circle O in the triangle ABC. By geometry
@y =cCy by = a0, =0, (Fig. 49.)

Ss=datdbto)=a+bhtoa=atat+a=a+0.
JAF=¢, =5 —a.
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Now ZLFA0=1}a.
OF r
Wnde= T i—a (65]

Similarly tan¢ 8, tangy =

C
) / B
Fia. 48.

Combining [63] and [65],

r ’(s——b)(s——c)
s—a )

s(s—a)

s—b s—c¢

- r=\l(s—-a)(s:b)(s—c)_ [66]

From [65] we have
r=(s—a)tanfa=(s—b)tan B=(s —c)tan 4 y. [67]
Let O be escribed to the
triangle A BC opposite A.
We have by geometry
BD = BF, CD = CE,
CB = BF + CE.
c.28s=AE + AF,

s=AE.
F1G. 50.
= QE _ 14
Now ta.n‘}a—-A == [68]
. T 7
Similarly tan § B, ta.n}-y=:7 T
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Combining [63] and [68],

n_(ERes9,

SRy 1l )1 C R ) RSO P9

s—a
Comparing [65] and [68],
rs=r,(s—a)y=r,(s—b)y=r.(s —c). [70]

EXERCISES

Verify the following identities :

L ra+r,,+rc—3r=ub:’—+c—r-°°
g 11 1.1
r Ta 7y 7.

4. 00, =(r,—7r)csc}a.
5. 00,=asecta=0bsecyB=csecty.

6. tan}atan&ﬁtan}y=§-
7. sina + sin B+ siny——‘-%-

59. Area of the Triangle.

The area of a triangle may be expressed in different
ways, depending upon the parts known. We have from
geometry (Fig. 51)

2 K = ap, = bp, = op, - [71]
Pa=csin B="bsiny.
. 2K=acsin B=absiny =bcsina. - [72]
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a sin
sin a

From [57], - c=

Substituting this value in [72],

a?sin Bsiny sinysing
sin a sin B

2K =

_¢’sinasinf8 [73]
- siny ,

F1a. b1,

We have from geometry

K =rs. [74]
Combining [74] and [66],
K=\/s(s—a)(s—b)(s—c). [75]
EXERCISES

Find the areas of the following triangles:

1. a =13, =10, ¢ =17.
2. a =143, b = 100, vy = T4° 16"
3. b =200, a =47° 24/, v = 63°25".

4. The sides of a triangle are 175, 120, 215; find its
area and the radii of its inscribed and escribed circles.
abe

5. =_—-
Prove K iR
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Verify the following identities :

6. cos&acos{»ﬂcosfy:%- (Use [62].)
7. ootﬁaoot&ﬁcot}y=;—;- (Use [63].)

2
8. cot}a+cot}/3+eot}y=;—(-



CHAPTER VII

THE SOLUTION OF THE TRIANGLE

60. We have learned in geometry that a triangle can be
constructed when we are given three of its parts, of which
one, at least, is a side. The formulas of the preceding
chapter enable us to compute the values of the unknown
parts when we know the measures of the given parts.

The three given parts may be:

I. One side and two angles.
II. Two sides and the included angle.

III. Two sides and the angle opposite one of them.

IV. Three sides.

Formulas [57], [58], and [60] are sufficient to solve all
four cases. In the computations in Chapter II we used
natural functions; here we propose to use logarithms, and
formula [60] is not adapted to logarithmic calculation.
In its place we shall use formulas [65] and [66], which
are derived from it.

The necessary formulas are :

a b ¢
sina=sinB=siny=M (571
tan&(a——ﬁ)=:;[ljta.n1}(a+/3); [568]
tana=——, [65]
where r= \/(3““)(3;'")(3_”)- [66]

89
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THE SOLUTION OF THE TRIANGLE
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6l1. Logarithmic Functions. Tables of logarithmic func-
tions are arranged like tables of natural functions, They
consist of the logarithms of the natural functions. When,
however, the characteristic is negative, 10 is added. For
this reason the characteristics of all sines and cosines,
of tangents of angles less than 45° and of cotangents of
angles greater than 45° are 10 too large. This fact must
be kept in mind when computing. A little experience will
correct any liability to error from this source. Sines and
tangents of very small angles, cosines and cotangents of
angles near 90° cannot be accurately obtained by nterpo-
lation. Supplementary tables are generally furnished for
this purpose.

62. The actual work of computation in each case will
now be illustrated by the solution of specific problems.
The first step in the solution of every problem is the
careful construction of the figure and the graphic solution
by measurement. The results so obtained serve as a rough
estimate of what is to be more accurately determined by
computation. _

In the following illustrative problems the work is ar-
ranged in convenient form, and this form should be fol-
lowed by the student.

Case I. Two Angles and a Side.
Given a =571, a=57° 21'.3, =43 16'.8, find the

other parts.
a = 5T1.
Data { a=57°21'3.
B=43°16'8. Check
y="T9°21'9. ¢+ b=113141
log a = 2.75664. ¢ — b = 201.59.
log sin @ = 9.92532 — 10. +(y + B)=61°19'35.
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log M = 2.83132. +(y — B) = 18° 2.55.
log sin 8 = 9.83605 — 10. log (¢ + ) = 3.056362.
log sin y = 9.99248 — 10. log (¢ — b) = 2.30447.

log b = 2.66737. log quotient = .74915.
log c = 2.82380. log tan §(y + B) = .26204.
b = 464.91. log tan 4 (y — B)=9.51288 — 10.
¢ = 666.5. log quotient = .74916.
EXERCISES
1. a=137.43, a = 43° 21'3, B=65°23'5.
2. a=437.18, B =83°25.7, y=T73°32'8.
3. b =94349, a =12°17'.6, y=121°07"2.
4. ¢ = 349.44, B =102° 353, y=80°12.1
5. ¢ =637.23, a = 46° 46/, B=56° 56"
6. a=63.72, a =1° 20, B=T75°40".
7. 6=6.372, a = 88° 14'5, vy =88° 14'2.
8. b =.0641, a =36°17'1, vy =53°43'.6.
9. ¢ =.0037, B =36°17/, y ="72° 34/
10. a = 4.003, a = 36° 17/, B =108° 51",

63. Case II. Two Sides and the Included Angle.

Given a = 1371, b = 1746, y = 46° 30", find the other
parts.

a=1371.
Data < b =1746. .
- y=46°30" Check
b+ a = 3117. log a = 3.13704
b — a = 375. log sin a = 9.89116 — 10
3(B + a) = 66° 45". 3.24588

log (b — a) = 2.57403.
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log tan 4 (8 + a) = .36690. log b = 3.24204
colog (b + a) = 6.50626. log sin 8 = 9.99616 — 10
log tan 4 (8 — a) = 9.44719 — 10. 3.24588
+(B — a)=15° 38'6.
a=51°6'4. log ¢ = 3.10644
B = 82° 23'6. log sin y = 9.86056 — 10
log @ = 3.13704. 3.24588

colog sin a = 0.10884.
log sin y = 9.86056.
log ¢ = 3.10644.

¢ = 1276.7.

EXERCISES
1. a=127, b =145, y=24°37'2.
2. a=127, b = 145, y = 84° 13'6.
3. a=121, b =145, y =173° 28'5.
4. b=231, ¢ =31, a=T4°15'2.
5. a=231, b =221, y =100° 14'5.
6. ¢ =347, a=34, B =10° 46'.3.
7. b=12473, ¢ = 34.257, a =146° 241,
8. a=100, b = 200, y = 100°.
9. a=100, b = 200, y = 10°.

10. The line 4B is divided at D into two segments,
AD =200, DB=100; from C each of these segments
of 35°. Find the angles CAB and CBA.

Two Sides and an Angle Opposite One of
sometimes admits of two solutions. Let
e @, b, a. Construct the angle a. On
LC=1bj; from C as center with radius a,
utting the other side AM at B, and B,
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The triangles 4B,C and AB,C both satisfy the conditions,
and both are therefore solutions. Study of the diagram
will show that we shall have
two solutions when, and only
when,

a<90°% b>a>p.

In any particular case the Fio. 52.
graphic solution will deter-
mine whether there is one or two solutions.

The angles at B, and B, are obviously supplementary.
In the computation we find sin 8. Now we learned in § 26
that there were two angles less than 180° with the same
sine, the one the supplement of the other; when we find
B from sin B, we must therefore take not only the value
given in the table but also the supplement of this value.
If there is but one solution, later steps in the computation
will compel the rejection of the second of these values.

Given, 1. a =44.243, b =30.347, a = 34°23'2.
2. a=44.243, b=060.347, a = 34°23'2.

1. 2. 2',
(o 44243, . 44243
Data < b 30.347, 60.347.
Ia 34° 232, 34° 23'.2.
log o 1.64585, 1.64585.
log sin @ 9.75188 — 10, 9.75188 — 10.
log M 1.89397, 1.89397.
log b 1.48212, 1.78066.

log sin B 9.58815 — 10, 9.88669 — 10.
B 22° 475, 50° 23'.1, 129° 36'.9.
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y 122°49'3, 95°13.7,  15°59'9.
log sin y 9.92447 — 10, 9.99819 — 10, 9.44030 — 10.

log ¢ 1.81844, 1.89216, 1.33427.
¢ 65.833, 78.012, 21.591.
Check .
c+b 96.180, 138.36, 81.938.
¢c—b 35486, 17.665, 38.756.

F(y+P) T2°48.4,  T2°48'4,  T2°48'4.
+(y—B) 50°00.9,  22°25'3,  56°48'5.

log (¢ + b) 1.98308, 2.14101, 1.91349.
log (¢ — &) 1.550086, 1.24712, 1.58833.
log quotient .43302, .89389, .32516.
log tan 7—;;—@ .50945, .50945, .50945.
log tan Y——2;£ .07641, 9.61555 — 10, ..18431.
log quotient  .43304, .89390, .32514.
EXERCISES
1. a =145, b =160, a = 47° 38"
2. a =237, ¢ =3.14, vy = 65°23"
3. b =1473, a =124.2, B =142°17".
4. a=3214, b =270, B =T75°48'3.
5. b =13.47, ¢ =18.75, B =110° 43"
6. b =.149, ¢ =.137, © oy =38° 47"
7. a=1.243, b = 2.345, a =10° 57'5.
8. a=4321, b =321.4, B = 28° 47"
9. ¢ =.0027, a =.0031, a = 84° 21'6.
10. a =124, b =83, B = 68° 43"
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11. I =241,
12, p =1317,
18. a = 187.5,
14. a = 5872,
15. a=1,

16. a =.0003,
17. a = 3000,
18. a = 1241,
19. o = 1899,

20. b =173, a = 74°12'; find the limits of a for two

solutions.

21. a =127, b =143; find the limits of a for two

solutions.

65. Case IV. Three Sides. Given a = 1573, b = 2044,

¢ = 2736.
a = 1573,
Data < b = 2044,
¢ = 2736,
2 s = 6353,
s = 3176.5,
s —a = 1603.5,
s —b=1132.5,
s — ¢ =440.5,
+a=17° 227,
3+ B = 23° 539,
4y =48°43'4,
a = 34° 45'4,
B =47° 47'8.
vy =97° 26'8.

m = 214, p = 43° 27"

g =17.13, Q=T1°31"

b = 2011, a = 67°47'4.
b = 7857, B =185

b =2, a = 23° 32"

b =.0004, a =505

b = 4000, a= 550

b = 2114, a = 63° 36/,

b = 2004, a="731"

colog s = 6.49805.
log (s — @) = 3.20507.
log (s — b) = 3.05404.
log (s — ¢) = 2.64395.
log »* = 5.40111.
log » = 2.70056.
log tan 4 a = 9.49549 — 10.
log tan % B = 9.64652 — 10.
log tan 4 y = .05661.

Check
a + B + y =180° 00'.0.
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EXERCISES
1. a=51, b =65 ¢ = 60.
2. a=251, b = 65, ¢ = 20.
3. a =431, b = 440, ¢c=2b.
4. a="T8.43, b =101.67, ¢ = 29.82,
6. a =1111, b =120, ¢ = 130.
6. a=.003, b =.007, ¢=.011.
7. a=.431, b= .34, c=.7.
8. a=26, 5=6, c=2.
9. a =6, b=6, ¢c=11.
10. e =12, b =14, ¢ =16.
11. a =4, b =6, c=09.
12. a =4, b=6, c=3_8.
13. a =4, b=6, c=11.
EXERCISES

1. One side of a triangular lot is 1427 ft.; the adjacent
angles are 48° 15' and 75° 35'; find the perimeter and the
area.

2. Prove that the area of a quadrilateral is one-half the
product of its diagonals into the sine of the angle between
them.

8. The diagonals of a parallelogram are 17 ft. and 30 ft.,
and the angle between them is 64° 27'; find the sides of
the parallelogram and its area.

4. A balloon is directly over a straight road. From two
points 3 mi. apart and on opposite sides its elevation
was found to be 30° 28’ and 47° 22'; what was its height ?
If the two points of observation had been on the same side
of the balloon, what would its height have been ?
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5. What is the angle between two faces of a regular
tetrahedron ? of a regular octahedron ?

6. Three circles whose radii are 12, 17, and 19 are tan-
gent, two and two externally; find the area of the surface
enclosed by them.

7. From two successive mile posts on a straight and
level road the elevation of the top of a hill in line with
them is 8°and 10°; find the distance and height of the hill.

8. The longer sides of a parallelogram are 18, the
shorter sides 10, and one diagonal is 12; find the other
diagonal and the angles.

9. The parallel sides of a trapezoid are 34 and 50, the
non-parallel sides 20 and 25; find the angles and the
diagonals.

10. Two sides of a triangle are 20 and 30, and the
median from their intersection is 16 ; find the base and
the angles of the triangle.

11. A field is 500 ft. square ; a post stands 350 ft. from
one corner and 400 ft. from an adjacent corner ; what are
its distances from the other two corners, 1°, when it is within
the field; 2° when it is outside ? If the second corner.were
opposite the first instead of adjacent to it, what would the
distances be ?

12. Wishing to find the height of a mountain, I measure
a line of 600 yds. in the same vertical plane with the top
of the mountain. The upper end of this line is 40 ft.
higher than the lower end, and the elevation of the moun-
tain top at the former is 6° 23!, at the latter 3° 23';
what is the height of the mountain above the lower end
of the base line? If the lower end of the base line were
next to the mountain, what would its height be ?



100 PLANE TRIGONOMETRY

13. A straight and level road runs along a seacoast.
From two points on this road, 2 mi. apart, the top of
a lofty mountain is visible ; what measurements must I
make to find its height without leaving the road ?

14. The parallel sides of a trapezoid are 42 and 32, one
oblique side is 20, and it makes an angle of 65° with the
longer parallel side ; find the other side, the diagonals, and
the angles ; find the same parts if the oblique side makes an
angle of 65° with the shorter parallel side.

15. A tower 50 ft. high has a mark 20 ft. from the
ground. At what distance from its foot do the two parts
of the tower subtend equal angles ? at what distance does
the lower part subtend twice the angle that the upper does ?

16. The altitude of a certain rock is observed to be 47°,
and after walking 1000 ft. towards it, up a slope of 22° the
observer finds its altitude to be 77°; find the height of the
rock above the first point of observation.

17. From two points 4 and
P B, 5000 ft. apart, two inac-

\i cessible points P and @ are
visible. I find the angles
PAB=107° 37/,
PBA = 34° 23/,
A B QAB = 43° 46/,
. 8 QBA = 81° 11/;

what is the distance from P to Q, 1°, when both are on the
same side of AB; 2° when they are on opposite sides ?

18. Two flag-poles are 203 ft. apart. From the middle
point of the line joining them the elevation of the taller is
double that of the shorter ; but on going 434 ft. nearer the
shorter, their elevations are equal. What is the height of
each ?
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19. From the top of a hill the depressions of the top
and bottom of a flagstaff 25 ft. high, standing at the foot
of the hill, are 45° 13' and 47° 12/, respectively. What is
the height of the hill above the foot of the flagstaff ?

20. A column on a pedestal 20 ft. high subtends an
angle of 30°; on approaching 20 ft. nearer, it again sub-
tends an angle of 30°. What is the height of the column ?

21. From the middle point of the longest side of the
triangle, whose sides are 10, 14, 17, a circle is described
with radius 12; where will it cut the other sides ?

22. Two towers stand near each other in a plane. Their
altitudes, each measured from the base of the other, are
46° 6' and 33° 45', respectively, and the distance between
their summits is 87 ft. What is the height of each, and
what is their distance apart ?

23. Three circles with radii 16, 7, 5 touch each other
externally; what is the area of the curvilinear triangle
so formed ? If the two smaller circles are within the larger,
what is the area of the curvilinear triangle ?

24. The sides of a triangle are 20, 30, 40; find the
lengths of, 1°, the three altitudes; 2° the three medians;
3° the bisectors of the three interior angles ; 4°, the bisec-
tors of the three exterior angles; 5° the radii of the cir-
cumscribed circle, the inscribed circle, the escribed circles.

25. Near the foot of a flagstaff, 150 ft. high, are two
posts, 4 70 ft. north, B 100 ft. east. What is the shortest
distance from 7, the top of the staff, to the line 4B?
what angle does this line make with the ground ?

26. Three sides of a convex quadrilateral inscribed in a
circle 30 ft. in diameter are [ = 14 ft.,m» =18 ft., n =12 ft.;
find the fourth side and the angles when, 1°,  is the middle
one of the three given sides; 2° when m is the middle one;
3° when # is the middle one.
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27. Standing on a headland 250 ft. high, I observe a
ship. At first it bears N.N.W., and its angle of depression
is 16° 8/, ten minutes later it bears E. by 8. and its depres-

D
A TN C

N

S
FiG, 54,

sion is 32° 18'; find what direc-
tion the ship is sailing, its speed,
and how near its course lies to the
headland.

28. A, B, and C are three buoys;
AB = 320 yds., BC =435 yds., C4
=600 yds. A ship S finds that
AB subtends an angle of 8° and BC
an angle of 26°. How far is the
ship from each of the buoys ?

Suggestion. Draw a circle through 4, C, and S, cutting
SB produced in D. Draw AD and CD.
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sin ¢ csc ¢ = 1.
cos ¢ sec ¢ = 1.
tan ¢ cot ¢ = 1.
sin ¢
cos ¢

= tan ¢.

cos ¢
sin ¢
sin®¢ + cos?¢ = 1.
1 4 tan®¢ = sec?¢.
1 + cot?¢ = csc?¢.
f(— ) =%F(4).
S(90° £ ¢) = = cof (¢).
FUSD £ )= % £(4).
F(270° £+ ¢) = = cof (¢).
sin (¢ + 6) = sin ¢ cos § + cos ¢ sin 6.
cos (¢ + 6) = cos ¢ cos § — sin ¢ sin 6.
sin (¢ — 6) = sin ¢ cos § — cos ¢ sin 6.
cos (¢ — ) = cos ¢ cos 6 + sin ¢ sin 6.
tan ¢ +tan 6
1 —tan ¢ tan @

tan¢p —tan 6
1 + tan ¢ tan 6
103

= cot ¢.

tan (¢ + 60) =

tan (¢ — 6) =

(1]
(2]
(3]

(4]

(5]

(6]
7]
(8]
(9]
[10]

[11]

(18]
[19]
[30]

(31]
[34]

(35]
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_—1+4 cotecotd

cot (¢ +0)= cot ¢ + cot @
_ _1+cot¢cot¢.

cot (¢ 0)_——cot¢+cot0

8in Z ¢ = 2 sin ¢ cos ¢.

cos 2 ¢ = cos?¢p — sin?¢p
=2cos?¢p —1 }
=1—2 sin%¢.
2t
t“2¢=1—2$;
cot2¢ = c____ozt’cﬁt-;l_
sing =208,
cos}¢=\/1+gos¢-
— COS ¢
tant ¢ = \1+cos¢

_ sing _1—cosg
1 +cos¢ sin ¢

/1
cot 4 ¢ = —+ 22: i

1 +cos¢ sin ¢
sing 1—cos¢

sin ¢ + sm0 2 sin 4 (¢ + 6) cos 4 (¢ — 6).
sin ¢ — sin @ = 2 cos 4 (¢ + 6) sin (¢ — 6).
cos ¢ + cos 6= 2 cos } (¢ + 6) cos (¢ — 6).
cos ¢ — cos = — 2 sin4(p+6)sin 4 (¢ — 6).

a b ¢
sina sinfB siny

[36]

(37]
[38]

(39]

[40]
[41]

[43]

[44]

[45]

[52]
[53]
[54]
[55]
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a+b tand(@a+pB)  cotiy

a—b tanf(a—pB) tang(a— @)

b = ¢+ a®— 2 ca cos B.
¢ =a?+b*— 2ab cosy.

N _dE=89(—9
sm«}a—-\/ be ) ete.
cos}a:\"ﬁsl;—a), ete.

_ =8 (=20
ta.n«}a—\/ G~ a) » ete.

tan}a:s

a’=b“'+c’-—-2bccosa.}

r
» ete.
—a ;

N DI CEDIC=)

8

2K = ap, = bp= cp..

2K = bc sin a = ca sin B = ab sin y.

g .
ox=2 sm'B sin Y, ete.
sin @

K = rs.

K=Vs(s—a)(s—b)(s—¢).
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(58]

(59]

[61]
[62]
[63]
[65]

(66]

[71]
[72]

[73]
[74]
[75]
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PREFACE.

IN 1881 a TREATISE ON TRIGONOMETRY was published under
the joint authority of PROFESSORs OLIVER, WAIT, and JONES,
In 1889 this book was rewritten and reissued under the same
title and by the same authority. In all five editions have been
‘printed.

Professor Oliver died last March, and now that a new edi-
tion of the book is called for and many changes are proposed,
it seems better, perhaps fairer towards him, to issue it under
my single name. It may be regarded, then, both as a new edi-
tion of the older book, and as itself a new book.

Among the more important changes are these :

1. The introduction, at the beginning, of a chapter on THE
RIGHT TRIANGLE, treating it as the pupil has been accustomed
to think of it in plane geometry, and without the complex
notions of directed lines and angles.

In this chapter he learns, also, how to use tables of trigono-
metric ratios and logarithms, and he gets some notion of the
simpler applications of trigonometry to problems in surveying.

2. The second chapter, on the GENERAL PROPERTIES OF
PLANE ANGLES, follows more closely the general lines of the
old treatise, but it differs widely in details : in particular, it
- tnakes a much freer use of projections.

3. The third chapter, on PLANE TRIANGLES, shows a more
radical departure. The habit of writers on trigonometry
seems to have been to give broad and general definitions of
trigonometric ratios, and to prove generally the propositions
that relate to plane angles, and then, when they come to dis-
cuss the properties of plane triangles, to forget all they had
said before, and to fall back on the ratios of positive acute
angles.

In the edition of 1889 I tried to make the definitions and
the proofs general ; but the method then followed never satis
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fied me, and I sought in vain for light in the many American
and foreign text-books that I consulted.

But now, through a happy suggestion of one of my assist-
ants, Mr. Fowler, I think I have overcome the difficulty.
That suggestion was to use THE EXTERIOR ANGLES; and by
such use I have been able to make the proofs general and the
formule symmetrie. So, in space trigonometry, I have been
able to apply this suggestion to the discussion of the proper- -
ties of triedral angles and spherical triangles with the best
results.

4. Greater prominence has been given to the GENERAL TRI-
ANGLES.

5. The proof of De Moivre’s formula by aid of imaginaries
has been left out: I propose to. write a book, shortly, on
HIGHER ALGEBRA, and it has seemed to me that there would
be the best place to discuss the applications of imaginaries to
trigonometry.

6. Most of the FIGURES have been redrawn.

On the other hand, many parts of the older book have been
included without change, notably the discussion of derivatives
and series, of directed areas, of astronomy, and of navigation ;
and for the most part the examples have been taken bodily.

As to the title of the book, it has seemed to me that the
word TREATISE was too large for me ; and as I have meant my
book primarily for class use, I have called it a DRILL-BOOK.

In writing this book, I have been very fortunate in my as-
sistants. To Mr. Charles S. Fowler and Dr. Virgil Snyder,
instructors in mathematics in Cornell University, I am deeply
indebted, both for their valuable suggestions, and for their
unwearied labors in beating out the text and in preparing the
questions and examples; and, for its dress, I am no less
indebted to my draughtsmen, Mr. John S. Reid and Mr. Hiram
S. Gutsell, instructors in drawing, to my engravers, the
American Bank Note Company, and to my printers, Messrs.
J. J. Little & Co.

GEORGE W. JONES.
ItHACA, N. Y., January 1, 1896. .
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SUGGESTIONS TO TEACHERS.

THERE are many things in this book not meant for beginners.
Below is a rough list of the chapters and parts of chapters that
may be taken up at a first reading : the parts omitted are for
advanced classes. And as to those parts which are included in
the list, great caution must be taken lest too many examples,
or too hard ones, be set ; for there are many of them, printed
in a small space. No one can be expected to work them all,
and the hardest of them should be reserved for the strongest
pupils. But the profit comes to the pupil by hard thinking ;
and the best part of the thinking is in answering the questions.

Very often more than one figure is used to illustrate a prin-
ciple : for the most part, the first figure is the simplest, and that
one should be well understood before the others are looked at.
Later the other figures may be taken up, and the generality of
the principle will be felt only when they have all been studied.

When the reasons are obvious, both theorems and corollaries
are left without formal demonstration ; but students are ex-
pected to state the proofs. .

In most cases theorems are given only in formula : it is best
that these formulee be translated into words.

In most cases answers to the examples are not given, and the
student is left to test his own results : the testing is counted
as not less important than the solution, and the hahit of inde-

pendent thought and self-reliance so cultivated as most valu-
able of all.

Only the main lines of the subject are developed in the text :
collateral matters are outlined in the examples and left for the
student to work out for himself.

FOR A FIRST READING.

I, all, pp. 1-21.

II, §§ 1-9,12,  pp. 22-53, 58-60.
II1, §§1-4, pp. 62-75.
IV, none.

V, §§1-7, 9-15, pp. 104-130, 134-161.
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NEW SIGNS AND WORDS.

SoME of the less familiar signs used in this book are these :
>, larger than ; 3, not larger than ;
* <, smaller than ; £, not smaller than ;
#, not greater than ; <, not less than ;
#, not equal to ; - - -, and soon, meaning the contin-
uance of a series of terms in the way it has begun ;
=, approaches, meaning that the value of one expres-
sion comes very close to that of another, without ab-
solute equality ;
=, stands for, or is identical with.

The common point of two or more lines or planes is their co-
potnt ; the common line of two or more points or planes is their
co-line ; and the common plane of two or more points or lines
is their co-plane. The corresponding adjectives are co-pointar,
co-linear, and co-planar.

The distinction between larger-smaller inequalities and
greater-less inequalities is this: the first refers to absolute mag-
nitude alone, without regard to signs of quality ; the other, in
common usage, regards both sign and magnitude.
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FOUR-PLACE LOGARITHMS.

FORM OF A LOGARITHM.

THE LocARITHM of a number is the exponent of that power to which another number,
the base, must be raised to give the number first named. The base commonly used is 10
and as most numbers are incommensurable powers of 10, a common logarithm, in general,
congists of an integer, the characteristic, and an endless decimal, the mantissa.

If a number be resolved into two factors, of which one isan integer power of 10 and the
other lies between 1 and 10, then the exponent of 10 is the characteristic, and the logarithm
of the other factor is the mantissa. The characteristic is positive if the number be larger
than 1, and negative if it be smaller ; the mantissa is always positive. A negative character-
istic is indicated by the sign — above it. The logarithms of numbers that differ only by
the position of the decimal point have different characteristics but the same mantissa.
E.9.Tr0=103x7.77 and log 7770 =8.8004 ; .0777 =10-3x%.7%, and log .0777 = 2.8904.

TABLES OF LOGARITHMS,

The logarithms of any set of consecutive numbers, arranged in a form convenient for
use, constitute a table of logarithms. Such a table to the base 10 need give only the man-
tissas ; the characteristics are manifest. This table is arranged upon the common double-
entry plan; i.e. the mantissa of tlie logarithm of a three-figure number stands opposite the
first two figures and under the third figure. The logarithms are given correct to four places.

TO TAKE OUT THE LOGARITHM OF A NUMBER.

A three-figure number ; Take out the tabular mantissa that lies in line with the first two
figures of the number and under the third figure ; the characteristic is the exponent of that
integer power of 10 which lies next below the number.

E.g. log 677 =2.8306, log 6.78 =0.8312, log .0679 =2.8319, log 676 000 = 5.8209.

A number of less than three figures : Make the number a three-figure number by annex-
ing zeros, and follow the rule given above.

E.g. log 700 = 2.8451, log 7 = 0.8451, log .0071 = 5.8513, log 71000 = 4.8518.

A four-figure number ; Take out the tabular mantissa of the first three figures, and add
such part of the difference between this mantissa and the next greater tabular mantissa
(the tabular difference), as the fourth figure is a part of 10 ; and so for a five-figure number.
E.g. "."log678 =2.8312 and log 679 =2.8319,

.*. log 678.6 = 2.8312 +.0007 x 6/10 = 2.8316, log 6.7875=0.8312 +.0007 x 75/100=0.8317.
TO TAKE OUT A NUMBER FROM ITS LOGARITHM.

The mantissa found in the table: Join the figure at the top that lies above the given
mantissa to the two figures upon the same line at the extreme left ; in this three-figure
number 8o place the decimal point that the number shall be next above that power of 10
whose exponent is the characteristic of the logarithm.

E.g.log12.8312 = 678, log10.8451 =7, log13.8513=.0071, log-15.8513="710000.

The mantissa not found in the table: Takeout the three-fignre number of the tabular
mantissa next less than the given mantissa, and to these three figures join the quotient of
the difference of these two mantissas by the tabular difference.

E.g. -.' log 678 =2.8312 and log 679 = 2.8319,
.. log-1 2.8316 = 6789 = 678.6, log-1 2.8317 = .0678% = .06767.

The use of trigonometric ratios and their logarithms is explained in works on trigonometry.



LOGARITHMS OF NUMBERS.

1 0 1 2 38 4 5 6 7 8 9
0 | 0000 0000 8010 4771 6021 | 6990 7782 8451 9081 9542
1 | 0000 0414 0792 1139 1461 | 1761 2041 2804 3553 2788
2 | 3010 8222 3424 8617 8802 | 8979 4150 4814 4472 4624
3 | 4771 4914 5051 5185 5315 | 5441 5568 5682 5798 5911
4 | 6021 6128 6232 6335 6435 | 6532 6628 6721 6812 6908
5 | 6990 7076 7160 7243 7324 | 7404 7482 7559 7634 7709
6 | 7782 7853 7924 7993 8062 | 8129 8105 8261 8325 8388
v | 8451 8513 8573 6633 8692 | 8751 8808 8865 8921 8976
8 | 9031 9085 9138 9191 9243 | 9204 9345 9395 9445 9404
9 | 9542 9590 9638 9685 9731 | 9777 9823 9868 9912 9956
10 | 0000 0043 0086 0128 0170 | 0212 0253 0294 0334 0374
11 | 0414 0453 0492 0531 0569 | 0607 0645 0682 0719 0755
12 | 0792 0828 0864 0899 0934 | 0969 1004 1038 1072 1106
13 | 1139 1173 1206 1289 1271 | 18303 1335 1367 1899 1430
14 | 1461 1492 1523 1553 1584 | 1614 1644 1678 1703 1732
15 | 1761 1790 1818 1847 1875 | 1908 1981 1959 1987 2014
16 | 2041 2088 2095 2122 2148 | 275 2201 2227 2253 2279
17T | 2304 2330 2355 2380 2405 | 2480 2455 2480 2504 2529
18 | 2553 2577 2601 2625 2648 | 2672 2695 2718 W4 2765
19 | 2788 2810 2833 2856 2878 | 2900 2023 2045 2967 2989
20 | 3010 3032 3054 3075 3096 | 3118 3139 8160 3161 3201
21 | 3222 3243 3203 3284 3304 | 3324 3345 3365 3385 3404
22 | 3424 3444 3464 3483 3502 | 3522 3541 8560 3579 3598
28 | 3617 3636 3655 3674 8692 | 3711 3729 8747 3766 3184
24 | 3802 3820 3838 3856 3874 | 3892 3009 3927 3945 3962
25 | 3979 8997 4014 4081 4048 | 4065 4082 4089 4116 4133
26 | 4150 4166 4183 4200 4216 | 4282 4249 4265 4281 4208
27 | 4314 4330 4346 4362 4378 | 4393 4409 4425 4440 4456
28 | 4472 4487 4502 4518 4533 | 4548 4564 4579 4504 4609
29 | 4624 4689 4654 4669 4683 | 4698 4713 4728 4742 4757
80 | 4771 4786 4800 4814 4829 | 4843 4857 4871 4886 4900
31 | 4914 4928 4942 4955 4969 | 4983 4897 5011 5024 5038
32 | 5051 5065 5079 5092 5105 | 5119 5132 5145 5159 5172
33 | 5185 5198 5211 5224 5287 | 5250 5268 5276 5289 5302
34 | 5815 5328 5340 5358 5366 | 5378 5391 5403 5416 5428
85 | 5441 5453 5465 5478 5490 | 5502 5514 5527 5539 5551
86 | 5568 5575 5587 5509 5611 | 5623 5635 5647 5658 5670
37 | 5682 5694 5705 5717 5729 | 5740 5752 5763 5775 5786
38 | 5798 5809 5821 5832 5843 | 5855 5866 5877 5888 5899
39 | 5011 5922 5983 5944 5955 | 5966 5977 5988 5999 6010
40 | 6021 6031 6042 6053 6064 | 6075 6085 6096 6107 6117
41 | 6128 6138 6149 6160 6170 | 6180 6191 6201 6212 6222
42 | 6232 6243 6253 6263 6274 | 6284 0294 6304 (314 06325
43 | 6335 6345 6355 6365 6375 | 6385 6395 6405 6415 6425
44 | 6435 G444 6454 6464 6474 | 6484 0493 0503 6513 6522
45 | 6532 6542 6551 6561 €571 | 6580 6590 6599 6609 6618
46 | 6628 6637 6646 6656 6665 | 6675 6684 6693 6702 €712
47 | 6721 6730 6730 6749 6Y58 | 6767 6776 6785 6791 6803
48 | 6812 6821 6830 6830 6848 | 6857 6866 6875 6884 (893
49 | 6902 6911 6920 6928 6937 | 6946 6955 6964 6972 6981
50, 0 1 2 3 4 5 6 7 8 9




LOGARITHMS OF NUMBERS.

X1

1
l

50| 0 1 2 3 4 5 6 7 8 9

50 | 6990 6998 7007 7016 7024 | 7088 7042 7050 7050 7067
51 | 7076 7084 7093 7101 7110 | 7118 7126 7185 7143 7152
52 | 7160 7168 7177 7185 7193 | 7202 7210 7218 7926 7285
53 | 7243 7351 7259 7267 7275 | 7284 7202 7300 7308 7316
54 | 7824 7332 7340 7348 7856 | 7364 7372 7380 7388 7396
55 | 7404 7412 7419 7427 7485 | 7443 7451 7459 7466 7474
56 | 7482 7400 7497 7505 7518 | 7530 7528 7536 7548 7551
57 | 7550 7566 7574 7582 7589 | 7597 7604 7612 7619 7627
58 | 7684 7642 7649 7657 7064 | 7672 7679 T686 7694 7701
59 | 7709 7716 7728 7781 7788 | 7745 TI52 T760 TTET Vii

60 | 7782 7789 7796 7808 7810 | 7818 7825 7832 7830 7846
61 | 7853 7860 7868 7875 7882 | 7889 7896 7903 7910 7917
62 | 7924 7981 7988 7945 7952 | 7959 7966 7078 7980 7987
63 | 7993 8000 8007 8014 8021 | 8028 8085 8041 8048 8055
64 | 8062 8089 8075 8082 8089 | 8096 8102 8109 8116 8122
65 | 8129 8136 8142 8149 8156 | 8162 8169 8176 8182 8189
66 | 8195 8202 8209 8215 8222 | 8228 8235 8241 8248 8254
67 | 8261 8267 8274 8280 8287 | 8293 8209 8306 8312 8319
68 | 8325 8331 8338 8344 8351 | 8357 8363 8370 8376 8382
69 | 8388 8395 8401 8407 8414 | 8420 8426 8432 8430 8445
70 | 8451 8457 B463 8470 8476 | 8482 8488 8494 8500 8506
71 | 8518 8519 8525 8531 8587 | 8543 8549 8555 8561 8567
72 | 8573 8579 8585 8591 8507 | 8603 8600 8615 8621 8627
78 | 8633 8639 8645 8651 8657 | 8663 8660 8675 8681 8686
74 | 8692 8698 8704 8710 8716 | 8722 8727 8733 8739 8745
75 | 8751 8756 8762 8768 8774 | 8779 8785 8791 8797 8802
76 | 8808 8814 8820 8825 8831 | 8837 8842 8848 8854 8850
77 | 8865 8871 8876 8882 8887 | 8893 8899 8904 8910 8915
78 | 8921 8927 8982 8938 8943 | 8940 8954 8960 8965 8971
79 | 8976 8982 8987 8993 8988 | 9004 9009 9015 5020 9025
80 | 9081 9086 9042 9047 9053 | 9058 9063 9069 9074 9079
81 | 9085 9090 9096 9101 9106 | 9112 9117 9122 9128 9133
82 | 9138 0148 0149 9154 9150 | 9165 9170 9175 9180 9186
83 | 9191 9196 9201 9206 9212 | 9217 9222 9227 9232 9238
84 | 9243 9248 9253 9258 9263 | 9260 9274 9279 9284 9289
85 | 9294 9299 9304 9309 9315 | 9820 9325 9330 9335 9340
86 | 9845 9350 9855 9360 9365 | 9370 9375 9380 9385 9390
87 | 9395 9400 9405 9410 9415 | 9420 9425 9430 9435 9440
86 | 9445 9450 9455 9460 9465 | 9469 9474 9470 9484 9489
89 | 9494 9499 9504 9509 9518 | 9518 9523 9528 9533 9538
90 | 9542 9547 9552 9557 9562 | 9566 9571 9576 9581 95RG
91 | 9590 9595 9600 9605 9609 | 9614 9610 0624 9628 9533
92 | 9638 9643 9647 9652 9657 | 9661 9666 9671 9675 9680
93 | 9685 9689 9694 9699 9703 | 9708 9713 9717 97RR 9727
94 | 9731 9736 9741 9745 9750 | 9754 9759 9763 9768 977

95 | 9777 9782 9786 9791 0795 | 9800 9805 0809 9814 9818
96 | 9823 9827 9532 9836 9841 | 9845 9850 9854 9859 9863
97 | 9868 9872 9877 0881 9886 | 9890 9894 9899 9903 9908
98 | 9912 0917 9921 9926 9930 | 9934 9930 9943 9948 9952
99 | 9956 0961 9965 9969 9974 | 9978 9983 98T 9991 9996
1000 0 1 2 3 4 5 6 7 8 9




X11 TRIGONOMETRIC RATIOS.
ANGLE SINES. COSINES. TANGENTS. COTANGENTS. | ANGLE.
Nat. Log. Nat. Log. | Nat. Log. Log Nat.
0°00’{.0000 o 1.0000 0.0000( .0000 @® ® 90°00’
10 |.0029 7.4687 1.00 0000 | .0029 7.4637 2. 5388 348.77 50
20 |.0058 7648'1.0000 0000|.0058 T648 2352 171.89 40
30 |.0087 9408(1.0000 0000 .0087 9409 0591 114.59 80
40 |.0116 8.0658 | .9999 0000|.0116 8.0658 1.9342 85.940 20
50 (.0145 1627 .9999 0000).0145 1627 8373 68.750 10
1°00’ | .01758.2419 | .9998 9.9999| .0175 8.2419 1.7581 57.290{89°00’
10 |.0204 3088 . 8 9999 .0204 38089 6911 49.104 50
20 [.0283 3668| .9997 9999|.02383 3669 6331 42.964 40
80 |.0262 4179 .9997 9999 | .0262 4181 5819 388.188 30
40 |.0291 4637‘ .9996 9998 .0291 4638 5362 84.368 20
50 |.0820 35050 .9995 9998|.0820 5053 4947 31,242 10
2°00’ | .0349 8.5428| .9994 9.9997 | .0849 8.5431 1.4569 28.636 |88°00"’
10 |.0878 b5776| .9998 9997 |.0878 5779 4221 26.432 50
20 |.0407 6097 .9992 9996|.0407 6101 3899 R4.542 40
80 |.0436 6397 | .9990 9996|.0437 6401 3599 22.904 30
40 |.0465 667 9989 9995|.0466 6682 3318 21.470 20
50 |.0494 6940 .9988 9995 .0495 6945 3055 20.206 10
8°00’|.0523 8.7188! 9986 9.9994 | .0524 8.7194 1,2806 19.081 87°00’|
10 |.0552 7423 | .9985 90993|.0558 7429 2571 18.076 50
20 |.0584 7645 .9983 9993 |.0582 7652 2348 17.169 40
80 |.0610 7857 .9981 9992 .0612 7865 2135 16.350 30 |
. 40 |.0640 8059 .9980 9991 |.0641 8067 1933 15.605 R0 .
50 |.0669 8251 .9978 90990|.0670 8261 1789 14.924 10 |l
4°00’ | 0698 8.8486 | .9976 9.9989 | .0699 8.8446 1.1554 14.301 (86°00"'|"
10 | .0727 8618 | .9974 9989|.0729 8624 1376 18.727 50 |
20 |.0756 8788 .9971 9988 .0758 8795 1205 18,197 40 ||
30 |.0785 8946 .9969 9987|.0787 8960 1040 12.706 80 |
40 |.0814 9104 .9967 9986|.0816 9118 0882 12.251 20 |
50 |.0843 9256 .9964 9985|.0846 9272 0728 11.826 10
5°00’ | .0872 8.9403 | .9962 9.9983 | .0875 8.9420 1.0580 11.430 85°(0"
10 |.0901 9545| .9959 9982(.0904 9568 0437 11.059
20 |.0929 9682 .9957 0981].0984 9701 0299 10.712 40 |
30 |.0958 9816 .9954 9980 .09683 9836 0164 10.385 80
40 |.0987 9945 .9951 9979 .0992 9966 0034 10.078 20
50 |.1016 9.0070 | .9948 9977 |.1022 9.0098 0.9907 9.7882 10
6°00’ | .1045 9.0192 | .9945 9.9976 | .1051 9.0216 0.9784 9.5144 184°00/
10 074 0811 .9942 9975|.1080 0336 9664 9.2553 50
20 |.1103 0426 .9989 9973|.1110 0458 9547 9.0098 40
30 |.1132 0539 .9936 9972|.1189 0567 9433 8.7769 30
40 1161 0648 .9932 9971 |.1169 0678 9322 8.5555 20
50 |.1190 0755| .9929 9969 .1198 0786 9214 8.3450 10
7°00’(.12199.0859( .99259.9968| .1228 9.08910.9109 8.1443 (83°00’
10 ,.1248 0961 .9922 9966,.1257 0995 9005 7.9530 50
20 |.1276 1060| .9918 9964 |.1287 1096 8904 7.7704 40
80 |.13056 1157 .9914 9963 |.1817 1194 8806 7.5958 80
40 |.1334 1252 .9911 9961 | .1346 1291 8709 7.4287 20
50 |(.1868 1345 .9907 9959 .1376 1885 8615 7.2687 10
8°00/|.13929.1486| .9908 9.9958| .1405 9.1478 0.8522 7.1154 [82°00’
10 |.1421 1525| .9899 9956 .1435 1569 8431 6.9682 50
20 |.1449 1612 .9894 9954 (.1465 1658 8342 6.8269 40
80 |.1478 1697 | .9890 9952 (.1495 1745 8255 6.6912 80
40 |.1507 1781 .9886 9950(.1524 1831 8169 6.5606 20
50 |.1536 1863| .9881 9948/|.1554 1915 8085 6.4348 10
9°00/ | .1564 9.1948| .9877 9.9946 | .1584 9.1997 0.8003 6.3138 [81°00'
] Nat. Log. Nat. Loz. | Nat. Log. Log. Nat.
l ANGLE COSINES. SINES. COTANGENTS. TANGENTS. |ANGLE.




TRIGONOMETRIC RATIOS. X111
[ anaLE. SINES. CORINES. TANGENTS. COTANGENTS, iANGLE.
Nat. Log. Nat. Log. Nat. Log. Log. Nat. | |
9°00’ | .1564 9.1948 | 9877 9.9946 | .1584 9.1997 0.8008 6.3138 81°00’|
10 [.15983 2022 9872 9944 |.1614 2078 7922 6.1970| 50
20 |.1622 2100|.9868 9942 |.1644 R158 7842 6.0844 40 |
30 |.1650 2176 | .9868 9940|.1678 2236 7764 5.9758' 30
40 | .1679 2251 9858 99388(.1703 2313 7687 5.8708 20
50 |.1708 2324 .9858 9936|.1788 2389 7611 5.7694! 10
10°00’ | .1786 9.2397 | ,0848 9.9984 | .1763 9.2468 0.7537 5.6713 '6§0°00"'
10 |[.1765 2468 9843 99381 |.1798 2536 7464 5.5764 50 1
20 |.1794 2538 98838 9929 |.1828 2609 7891 5.4845! 40
30 |.1822 2606 .9833 9927|.1853 2680 7320 5.83955: 30 I
40 |.1851 2674| 0827 9924.1883 2750 7250 5.3093"' 20
50 |.1880 2740 .9822 9922|.1914 2819 7181 5.2257 10
11200’ | .1908 9.2806 | 9816 9.9919 | .1944 9.2887 0.7113 5.1446|79°00’
10 |.1987 2870 .9811 9917 |.1974 2953 7047 5.0658 50
20 |.1965 2934 .9805 9914|.2004 3020 6980 4.9894 40
30 [.1994 2997|.9799 9912|.2085 3085 6915 4.9152 30
40 | .2022 8058 .9793 9909 |.2065 38149 6851 4.8430 20
50 |.2051 38119].9787 9907|.2095 3212 6788 4.77R9 10
12°00’ | .R079 9.3179| 9781 9.9904 | 2126 9.83275 0.6725 4.7046|78°00’
10 |.2108 38288 .9775 9901| .2156 3336 6664 4.6882 50
20 |.2186 3296 .9769 9899 |.2186 8397 6603 4.5786 40
30 |.2164 8853 .9768 9896|.2217 38458 6542 4.5107 30
40 | .2198 3410| .9757 9893 .224% 8517 6488 4.4494 20
50 | .2221 3466 .9750 9890|.2278 3576 6424 4.3897 10
18°00’ | .2250 9.3521 | .9744 9.9887 | .2309 9.8634 0.6366 4.8815(77°00/
10 |.2278 8575| .9737 9884|.2839 3691 6309 4.2747 50
20 |.2306 3629 .9730 9881|.2870 8748 6252 4.2198 40
30 |.2334 3682 .9724 9878|.2401 3804 6196 4.1658 30
40 |.R363 37384 9717 9875|.2432 38859 6141 4.1126 20
50 |.2891 3786 .9710 9872|.2462 3914 6086 4.0611 10
14°00’ | .2419 9.3837 | .9708 9.9869 | .2498 9.3968 0.6032 4.0108 |76°00/
10 | .2447 3887| .9696 9866|.2524 4021 5979 3.9617 50
20 |.2476 3937 .9689 9863 .2555 4074 5926 3.9136 40
30 |.2504 3986 .9681 9859|.2586 4127 5873 3.866%7 80
40 | .25832 4085 9674 9856 .2617 4178 5822 3.8208 20
50 | .2560 4083 .9667 9853 |.2648 4230 5770 8.7760 10
15000/ | .2588 9.4180| 9659 9.9849 | .2679 9.4281 0.5719 3.7321|75°00/
10 |.2616 4177|.9652 90846, 2711 4331 5669 38.6891 50
20 | .2644 4223 .0644 9843|.2742 4881 5619 3.6470 40
80 |.2672 4269 .9636 0839' .2778 44830 5570 38.6059 30
40 | .2700 4814| 9628 9836|.2805 4479 5521 3.5656 20
50 |.2728 43859 .9621 9832| .2836 4527 5473 8.5261 10
16°00’ | .2756 9.4403 | .9613 9.9828 | 2867 9.4575 0.5425 8.4874 |74°00/
10 | .2784 4447| .9605 9825| .2899 4622 5378 8.4495 50
20 |.2812 4491| .9596 9821 .2931 4669 5331 3.4124 40
80 |.2840 4538| .9588 9817|.2962 4716 5284 38.3759 30
40 | .2868 4576 .9580 9814 .2994 4762 5238 8.3402 20
50 | .2896 4618 .9572 9810 |.3026 4808 5192 3.30562 10
17°00’ | .2924 9.4659 | .9568 9.0806 | .3057 9.4858 0.5147 3.2709|73°00/
10 | .2952 4700|.95556 9802|.3089 4898 5102 38.2371 50
20 | .2979 4741 .9546 9798|.3121 4943 5057 3.2041 40
80 | .3007 4781|.9587 9794|.3158 4987 5013 3.1716 30
40 | .3085 4821|.9528 9790 .3185 5031 4969 3.1397 20
50 |.3062 4861 |.9520 9786].8217 5075 4925 3.1084 10
18900’ | .8090 9.4900 | .9511 9.9782 | .3249 9.5118 0.4882 3.0777 TR°00’
Nat. Log. Nat. Log. Nat. Log. Log. Nat.
ANGLE. COBINES, BINES. COTANGENTS. TANGENTS. |ANGLE.




TRIGONOMETRIC RATIOS.
l' ANGLE SINES. COSINES. TANGENTS. COTANGENTS. | ANGLE.
Nat. Log. Nat. Log. Nat. Lox. Log. Nat.
18°00’ | .3090 9.4900 | .9511 9.9782| .32499.5118 0.1882 3.0777 (72°00’
. 10 |.8118 4989(.9502 9778 .3281 5161 4889 8.0475 50
' 20 |.3145 4977 |.9492 9774|.8314 5203 4797 3.0178 40
80 |.3178 5015 |.9483 9770 .83346 5245 4755 2.9887 80
40 |.3201 5052 .9474 9765|.83378 5287 4713 2.9600 20
50 | .8228 5090.9465 9761),.3411 53829 4671 2.9319 10
119°00' | .8256 9.5126 | .9455 9.9757 | .34483 9.5870 0.4630 R.9042 (71°00/
I 10 |.3283 5168|.9446 9752|.3476 5411 4589 2.8770 50
I 20 |.3811 5199|.9436 9748 .8508 5451 4549 2.8502 40
30 |.3388 5235|.9426 9743|.8541 5491 4509 2.8239 30
40 | .3365 5270|.9417 9789|.8574 5531 4469 2.7980 20
50 . .3393 5806 .9407 9734|.8607 5571 4429 27725 10
20°00' | 3420 9.5841 | .9397 9.9730| .36409.5611 0.4389 2,7475|70°00"
10 | .3448 5875|.9387 9725 .8678 5650 4350 2.7228 50
20 | .8475 5409 ,.98377 9721|.83706 5689 4311 2,6985 40
80 |.8502 5443 (.9367 9716|.3789 577 4273 2.6746 30
40 |.3529 5477].9356 9711 .377 5766 4234 2.6511 20
50 |.3557 5510|.9346 9706|.3805 5804 4196 2.6279 10
21°00’ | .3584 9.5548 | .9336 9.9702 | .3889 9.5842 0.4158 2.6051 (69°00’
10 |.83611 5576|.9325 9697 |.3872 5879 4121 25826 50
20 |.3638 5609 .9315 9692 3906 5617 4083 2.5605 40
80 |.3665 b5641|.9304 9687 |.3939 5954 4046 2.5386 30
40 | .3692 5673|.9293 90682|.83973 5991 4009 25172 20
50 |.3719 5704|.9283 9677|.4006 6028 3972 2.4960 10
22°00'| .3746 9.5736[..92729.9672| .4040 0.6064 0.83936 2.475168°00”
10 | .8778 b5767|.9261 90667 |.4074 6100 3900 2.4545 50
20 | .3800 5798|.9250 9661 |.4108 6136 3864 2.4342 40
30 |.3827 5828|.9239 9656 .4142 6172 3828 2.4142 80
40 |.83854 5859|.9228 9651|.4176 6208 3792 2.3945 20
50 |.3881 5889 |.9216 9646 .4210 6248 38757 2.3750 10
28°00’ , .39079.5919 | .9205 9.9640 | .4245 9.6279 0.8721 2.83559 |67°00’
10 | .3984 5948|.9194 9635 .4279 6314 8686 R.83369 50
20 |.8961 5978|.9182 9629 .4314 (348 3652 2.3183 40
80 |.3987 6007}.9171 D624 .4348 6383 3617 2.2998 30
40 |.4014 6086|.9159 9618(.48383 6417 38583 2.2817 20
50 | .4041 6065|.9147 9613| 4417 6452 8548 2.2637 10
24°00’ | .4067 9.6098 | .9135 9.9607 | .4452 9.6486 0.3514 2.2460 (66°00’
10 | .4094 6121 .9124 9602|.4487 6520 3480 2.2286 50
20 |.4120 6149|.9112 9596 .4522 6553 3447 2.2113 40
30 |.4147 6177|.9100 9590|.4557 6587 3418 2.1943 30
| 40 | .4178 6205|.9088 Y584 |.4592 6620 38380 2.1775 20
I 50 |.4200 6232|.9075 9579|.4628 6654 3346 2.1609 10
'25°007 | .4226 9.6259 | .9068 9.9573 | .4663 9.6687 0.3313 2.1445 [65°00'
| 10 |.4253 6286 .9051 9567 |.4699 6720 3280 2.1283 50
| 20 |.4279 6:318|.9038 9561 |.4734 6752 3248 2.1123 40
80 |.4805 6340|.9026 9555|.4770 6785 8215 2.0965 30
40 | .4381 63866 |.9013 9549|.4806 6817 38183 2.0809 20
50 |.4358 6392|.9001 9543|.4841 6850 8150 2.0655 10
26°00’ | .4884 9.6418| .8988 9.9537 | .4877 9.6882 0.3118 2.0503 |64°00’
10 |.4410 6444 | 8975 9530(.4913 6914 3086 2.0353 50
20 |.4436 6470|.8962 9524|.4950 6946 3054 2.0204 a0
30 |.4462 6495|.8949 9518(.4986 6977 3023 2.0057 30
40 | .4483 6521 |.8986 9512(.5022 7009 2991 19912 20
50 |.4514 6546|.8928 9505(.5059 7040 2960 1.9768 10
27°00’ | .4540 9.6570 | .8910 9.9499 | .5095 9.7072 0.2928 1.9626({63°00’
| Nat. Log. Nat. Log. Nat. Log. Log. Nat.
' ANGLE. COSINES. SINES. COTANGENTS. TANGENTS, | ANGLE.




TRIGONOMETRIC RATIOS. XV
| ANGLE. SINES, COSINES. TANGENTS. COTANGENTS. ANG1 :
f Nat. Log. | Nat. Log. | Nat. Log. Log.  Nat.
127°007 | .4540 9.6570 | .8910 9.9499 | .5095 9.7072 0.2928 1.9626 |68°00"
| 10 | 4566 6595 .8897 9492|5182 7108 2807 1.9486| 50
! 20 | .4592 6620|.8884 0488(.5169 7134 2866 1.9847| 40
30 | 4617 6644 .8870 9479|.5206 7165 2835 1.9210| 80
40 | 4648 6668 | .8857 9478|.5248 7196 2804 1.9074| 20
50 | 4669 6692 | .8843 9466|.5280 7226 2774 1.8940| 10
28°00/ | .4695 9.6716 | .8829 9.9459 | .5317 9.7257 0.2743 1.8807 |62°00"
10 | 4720 6740 .8818 9453|5354 7287 2718 1.8676| 50
20 | 4746 6763 ) .8802 9446|.5892 7317 2688 1.8546| 40
80 | 4772 6787 | .8788 9439|.5480 7848 2652 1.8418| 80
40 | 4797 6810 .8774 9482|5467 7878 2622 1.8291| 20
50 | 4828 6838 | .8760 9425|.5505 7408 2592 1.8165| 10
20°00’ | .4848 9.6856 | .8746 9.9418 | .5548 9.7488 0.2562 1.8040 [61°00"
10 | .4874 6878| .8782 9411|.5581 7467 2583 1.7917| 50
20 | 4899 6901 .8718 9404|.5619 7497 2508 1.7796| 40
80 | 4924 6928| .8704 9397|.5658 7526 2474 1.7675| 30
40 | 14950 6946 | .8689 9390|.5696 7556 2444 1.7566| 20
50 | .4075 6968 | .8675 9383|.5735 7585 2415 1.7487| 10
30°00' | .5000 8.6990 | .8660 9.9375 | .5, 74 9.7614 0.2886 1.7821|60°00’
10 | .5025 7012 | .8646 9368|.5812 7644 2856 1.7205( 50
20 | .5050 7088 | .8631 9361|.5851 7678 2827 1.7080| 40
80 | 5075 7055| .8616 9353|.5800 7701 2299 1.6977| 80
40 | 5100 7076|.8601 9346|.5980 7780 2270 1.6864| 20
50 | .5125 7097 |.8587 9388|.5969 7759 2241 1.6758| 10
81000/ | .5150 9.7118 | .8572 9.9381 | .6009 9.7788 0.2212 1.6648 [59°00’
10 | 5175 7189 | .8557 9328|.6048 7816 2184 1.6534| 50
20 | .5200 7160 | .8542 9315|.6088 7845 2155 1.6426| 40
30 [ .5225 7181/ .8526 9308|.6128 7878 2127 1.6810| 80
40 | .5250 7201|8511 9300|.6168 7902 2098 1.6212| 20
50 | .5275 17222 .8496 9292|.6208 7930 2070 1.6107| 10
82000/ | .5299 9.7242 | .8480 9.9284 | .6249 9.7958 0.2042 1.6003 |58°00' 1!
10 | 5324 7262 | .8465 9276|.6289 7986 2014 1.5900| 50 |
20 | .5848 728%2| .8450 9268|.6380 8014 1986 1.5798| 40 |'
30 | .5378 7802 .84384 0260(.6871 8042 1958 1.5697| 80 '!
40 | 5898 7322 | .8418 9252.6412 8070 1980 1.5597| 20 !'
50 | 5422 7342|8408 9244|.6453 8097 1903 15497 10 |
88°00/ | .5446 9.7361 | .8887 9.9236 | .6494 9.8125 0.1875 1.5899 |57°00"’
10 | .5471 7380 .8371 9228|.6536 8153 1847 1.5801| 50 i
20 | ;5495 7400 | .8355 9219 .6577 8180 1820 1.5204| 40 ||
30 | .5519 7419 .8889 9211|.6619 8208 1792 1.5108| 30 |;
40 | 5544 7438|8828 9203|6661 8285 1765 1.5018] 20 |l
50 | .5568 7457 .8807 9194 |.6708 8268 1787 1.4919| 10
34°00/ | .5592 9.7476 | .8290 9.9186 | .6745 9.8290 0.1710 1.4826 56°00"
10 | 5616 7494 | .8274 9177|.6787 8817 1683 1.4788, 50
20 | 5640 7518| .8258 0169|.6830 8344 1656 1.4641 40
30 | 5664 7581| .8241 9160|.6878 8371 1629 1.4550| 30
40 | 5688 7550| .8225 9151|.6916 8398 1602 1.4460| 20
50 | 5712 7568| .8208 9142).6959 8425 1575 1.4370| 10
85°00' | .5786 9.7586 | .81929.9184(.7002 9.8452 0.1548 1.4281 55°00°
10 | 5760 7604 | 8175 9125|.7046 8479 1521 1.4193| 50
20 | 5788 7622| .8158 9116|.7089 8506 1494 1.4106| 40
80 | .5807 7640| .8141 9107|.7188 8538 1467 1.4019| 30
40 | 5881 7657| .8124 9098|.7177 8559 1441 1.3084| 20
50 | .5854 7675|.8107 9089 |.7221 8586 1414 1.3848 10
8600/ | .5878 9.7692 | .8090 9.9080 | .7265 9.8618 0.1887 1.3764 '54°00' |
Nat. Log. Nat. Log. Nat. Log. Nat. |
BNULE. ' CORINES. RINES. COTANGENTS. TANGENTS, ’ANG’-E. _i




XVl TRIGONOMETRIC RATIOS,
ANGLE SINES. COSINES. TANGENTS. COTANGENTS. | ANGLE.
Nat. Log. Nat. Log. Nat. Log. Nat.
36°00’ | .5878 9.7692| .8090 9.9080| .7265 9.8618 0.1387 1.83764 [54°00’
10 |.6901 7710|.8078 9070|.7810 8639 1361 1.3680 50
20 |.5925 7727 |.8056 9061|.7355 8666 1384 1.3597 40
80 [.5948 7744|.8039 9052|.7400 8692 1308 1.8514 30
40 |.59072 7761|.8021 9042|.7445 8718 1282 1.3432 20
50 | .6995 7778|.8004 9033|.7490 8745 1256 1.3851 10
87°00/|.6018 9.7795( .7986 9.9023( .7586 9.8771 0.1229 1.3270 |58°00’
10 |.6041 7811 .7969 9014(.7681 8797 1208 1.8190 50
20 |.6065 TS28|.7951 9004(.7627 8824 1176 1.3111 40
30 |.6088 7844|.7934 8995|.7673 8850 1150 1.3082 30
40 [.6111 7861 (.7916 8985|.7720 8876 1124 1.2054 20
50 | .6184 7877|.7898 8975|.7766 8902 1098 1.2876 10
138000/ | .6157 9.7893 | .7880 9.8965|.7818 9.8928 0.1072 1.2799 (52°00’
10 |.6180 7910(.7862 8955|.7860 8954 1046 1.2723 50
20 |.6202 7926 .7844 8946(.7907 8980 1020 1.2647 40
30 |.6225 7941(.7826 8935|.7954 9006 0994 1.257 30
30 |.6248 7957|.7808 8925|.8002 9082 0968 1.2497 20 ¢
50 |.6271 7973|.7790 8915 .8050 9058 0942 1.2423 10 |
89°00’ | .6298 9.7989( .7771 9.8905| .8098 9.9084 0.0918 1.2849 [51°00’
10 | .6816 8004|.7753 8895|.8146 9110 0890 1.2276 50
20 |.6338 8020|.7785 8884|.8195 9185 0865 1.2203 40
80 |.6861 8035|.7716 8874|.8248 9161 0839 1.2131 80
40 |.6883 8050(.7698 8864|.8292 9187 0813 1.2059 20
50 |.6406 8066|.7679 8853|.3842 9212 0788 1.1988 10
40°00’ | .6428 9.8081 | .7660 9.8843 | .8391 9,9288 0.0762 1.1918 (50°00’
10 |.6450 8096|.7642 8832(.8441 9264 0786 1.1847 50
20 |.6472 8111(.7628 8821 |.8491 9289 0711 1.177 40
80 |.6494 8125|.7604 8810|.8541 9815 0685 1.1708 30
40 [.6517 8140(.7585 8800|.8591 9341 0659 1.1640 20
50 |.6589 8155|.7566 8789|.8642 9366 0634 1.1571 10
41°00’ | .65619.8169(.76479.8778(.8693 9.9392 0.0608 1.1504 [49°00’
' 10 |.6588 8184 .7528 8767(.8744 1 0583 1.1436 50
! 20 |.6604 B8198|.7509 8756|.8796 94483 0557 1.1869 40
30 |.6626 8213|.7490 8745|.8847 9468 0532 1.1303 30
40 |.6648 8227 |.7470 8738|.8899 9494 0506 1.1237 20
50 |[.6670 8241).7451 8722|.8952 9519 0481 1.1171 10
42°00’ | .6691 9.8255( .7431 9.8711(.9004 9.9544 0.0456 1.1106 48°00’
10 |.6713 8269 |.7412 8699|.9057 9570 0430 1.1041 50
20 |.6734 8283|.7392 8688(.9110 9595 04056 1.0977 40
80 (.6756 8297|.7378 8676).9163 9621 0379 1.0913 80
40 | .6777 8311).7858 8665|.9217 9646 0354 1.0850 20
50 |.6799 8324).7333 8653|.9271 9671 0829 1.0786 10
43°00’/ | .6820 9.8388| 78314 9.8641 | .9325 9.9697 0.0308 1.0724 (47°00’
10 |.6841 8351(.7294 8629|.9380 9722 0278 1.0661 50
20 |.6862 8865|.7274 8618|.9435 9747 0258 1.0599 40
30 (.6884 8378|.7264 8606|.9490 9772 0228 1.0588 30
40 |.6905 8391(.7284 8594|.9545 9798 0202 1.0477 20 ;
50 |.6926 8405).7214 8582 .9601 9828 0177 1.0416 10
44°00’ | .6947 9.8418| .7198 9.8569 | .9657 9.9848 0.0152 1.0855 |46°00’
10 |.6967 8431 .7173 8557|.9713 9874 0126 1.0295 50
20 |.6988 8444 .7153 8545|.9770 9899 0101 1.0235 40
80 {.7009 8457 |.7183 8532|.9827 9924 0076 1.0176 30
40 |.7080 8469|.7112 8520|.9884 9949 0051 1.0117 20
50 |.70560 8482|.7092 8507|.9942 9975 0025 1.0058 10
45°00’ | .7071 9.8495( .7071 9.8495 11.0000 0.0000 0.0000 1.0000 45°00’
Nat. Log. Nat. Log. | Nat. Log. Log. Nat.
ANGLE. COBINES. SINES. COTANGENTS. TANGENTS. ANGLE.




TRIGONOMETRY.

TRIGONOMETRY is that branch of mathematics which treats
of the numerical relations of angles and triangles. It is
essentially algebraic in character, but is founded on geometry.

I. THE RIGHT TRIANGLE.

§1. TRIGONOMETRIC RATIOS.

TaEOR. 1. If from a point in one side of an acute angle a
perpendicular fall on the other side, then, in the right trian-
gle so formed, the ratio of the side opposite the angle do the
hypotenuse is the same, whatever point be taken ; and so for
that of the adjacent side to the hypotenuse, for that of the
opposite side to the adjacent side, and for the reciprocals of
these three ratios. :

For let A be any acute angle, B, B'- -+ points on elther bound-
ing line ; a, o' perpendlculars from B, B'--- to the
other line at o, ¢’ -.-; 5,0 - the lines Ac, AC’- - - ; and

¢, ¢'-+ - the lines AB, AB'- oo

then-.: the right triangles ABc, AB'C’. - - are similar,
.. the ratios a/c, a'/c'- - - are all equal ;
and so for the other ratios &/c, o'/¢'---, a/b, a'/b'+-.,
bja, ¥'/a'--, ¢/b, /Y-, c/a, c'fa's--..
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But if an angle be taken greater or less than A, the tri-
angles so formed are not similar to these, and the ratios are
different from those for the angle a.

For this reason an acute angle has its six ratios distinct
from the ratios of every other angle, and if one of the ratios
be given the angle can be constructed. These ratios are the
six principal frigonometric functions of an angle, and they
are named as follows :

opposite side to hypotenuse, the sine of the angle,
adjacent side to hypotenuse, the cosine,

opposite side to adjacent side, the tangent,
adjacent side to opposite side, the cotangent,
hypotenuse to adjacent side, the secant,
hypotenuse to opposite side, the cosecant.

When written before the name of the angle, the words
sine, cosine, tangent, cotangent, secant, cosecant may be
abbreviated to sin, cos, tan, cot, sec, csc. Standing alone,
the abbreviations have no meaning.

If ABc be any right triangle with c the right angle, a the
side opposite the acute angle A, & the side opposite the acute
angle B, and ¢ the hypotenuse, then the six ratios of each of
the acute angles may be expressed in terms of the three sides
of the triangle, as below.

sina=a/c, cscA=c/a, and sinB=4/c, cscB=c/b,
cosa=b/c, seca=c/b, cosB=a/c, secB=c/a,
tana=a/b, cota=b/a, tanB=4/a, cotB=a/b.

Note. In the discussion of the right triangle that follows,
the triangle is always lettered as in the figures above; .e.,
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with ¢ for the right angle, ¢ for the hypotenuse, A, B for the
acute angles, @, b for the sides opposite A, B.

The expression sin~ ¢/¢c means the angle whose sine is
a/c; cos™ b/c, the angle whose cosine is &/c; tan a/b, the
angle whose tangent is #/b, and so for the other ratios. They
are read : the anti-sine of a/c, the anti-cosine of b/c, the anti-
tangent of a/b, and so on.

E.g. if sina=4, ifcosB=$, iftan¥F=6, if cotx=4/3,
then A=sin'4, B=cos™'§, F=tan'6, X=cot-'y3.

The index ! is to be carefully distinguished from the nega-
tive exponent ; it is analogous to that in the expression log— 2,
which is read the anti-logarithm of 2 and means the number
whose logarithm is 2.

The positive powers of the trigonometric ratios are com-
monly written in the form sin®a, cos®B, instead of (sina)t,
(cos B)*; but their reciprocals are written in the form of
fractions, or with the exponent without the bracket.

E.g. 1/sina, or (sina)™!, not sin~'a ; 1/cos*B, or (cos B)™%.
’ QUESTIONS,

1. If the sides a, b, ¢, of a right triangle ABc be 3 feet, 4
feet, 5 feet, what are the six ratios of A and of B? .if the
gides be 3 yards, 4 yards, 5 yards ? if 3 miles, 4 miles, 5 miles ?

2. In a right triangle aABc the sides @, ¢ are 12 yards and 13
yards : find b and the six ratios of A and of B.

So, if @, & be 12 feet and 5 feet, find ¢ and the six ratios.

3. Construct the right triangle ABc with the hypotenuse ¢
5 feet, and a side @ 3 feet. What is the sine of the angle A ?

From this construct a right triangle ABc if sin A=§.

So, if cosa=4, iftana=3}, -ifcota=4, if seca=4

4. Construct sin™*4, cos™4, tan™4, cot™§, sec4.

5. Find the six ratios of one of the acute angles of a right
isosceles triangle.

6. Draw a perpendicular from the vertex to the base of an
equilateral triangle, and find the six ratios of the acute
angles of the right triangles so formed.
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7. In a right triangle ABc, let the hypotenuse ¢ be 12 feet
and the angle A be 30°: find the sides a, &, given sin 30°=.5,
cos 30° =.866, nearly.

8. In a right triangle ABc, let the side a be 12 yards and
the angle A be 35°: find the sides 4, ¢, given sin 35°=.574,
tan 35°=.7.

9. In a right triangle aBc, let the side & be 12 miles and
the angle A be 40°: find the sides ¢, @, given cos 40°=.766,
cot 40°=1.192.

10. In a right triangle ABc, let the hypotenuse ¢ be 12 feet
and the side @ be 8.484 feet : find the side 4 and the angle 4,
given sin 45°=.707.

11. In a right triangle ABc, let the side ¢ be 12 yards and
the side & be 10.07 yards : find the side ¢ and the angle 4, given
sin 50°=.766, tan 50°=1.192.

12. In a right triangle aBc, let the side & be 12 miles and
the hypotenuse ¢ be 20.9 miles : find the side @ and the angles,
given cos 55°=.574, tan 55°=1.428.

13. In a right triangle ABc, let the side @ be 12 metres
and the hypotenuse ¢ be 334 metres: find the side 4 and the
angles, given sin 21° 6'=.36, cos 21° 6'=.933.

Verify the work by showing that a’+8*=¢"

14. Draw two right triangles aBc, A'B'C’, having A larger
than A', and show which of the ratios of A are larger, and
which are smaller, than the like-named ratios of A'.

15. Draw a right triangle having an acute angle less than
half a right angle, and show which of the ratios of that angle
are larger than unity, and which are smaller.

16. Draw aright triangle having one acute angle very small,
and show which of the ratios of this angle are very small,
which are very large, and which are near unity.

As the angle is made smaller and smaller, approaching zero,
to what do these ratios approach ?

So, what are the ratios of the other acute angle, which is
very near a right angle ?
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THEOR. 2. If A be any acute angle, then:
StnA-cscA=1, cosA-seca=1, tana-cota=1.

For, from any point B of either side of the angle, let fall a

perpendicular Bc upon the other side, as in theor. 1;

then'.in the right triangle ABc so formed,
sinA=a/c, cscAa=c/a, [af.
.sinA-cscA=a/c-c/a=1. _ Q.E.D.
So, cosa=0b/c, seca=c/b, [df.
S.COSA-secA=b/c-c/b=1. = Q.E.D.
So, ' tana=a/b, cota=d/a, [df.
s.tana-cotA=a/b-b/a=1. . Q.E.D.

THEOR. 3. If A be any acute angle, then:

For °.

sinA/cosA=tana, CcOSA/SInA=colA.

in the right triangle ABc, formed as in theor. 1,
sina=a/c, cosa=b/c, tanAa=a/b, cotA=b/a, [df

s.sina/cosa=a/c: b/c=a/b=tana,

and

cos A/sina=b/c:a/c=b/a=cot A. Q.E.D.

THEOR. 4. If A be any acute angle, then :

sin’A+cos’A=1, 1+tan’a=sec’s, 1+cot’A=csc’A.

For - in the right triangle ABc, a’+8"'=¢",
sa/l+ b P=1; [div. by ¢

and " sina=a/c, cosa=d/c, [af.
.. sin’A +cos’a=1. Q.E.D.

So, &/F+1=c"/b; [div. by &
and ".r tan A=a/b, secAa=c/b, [af.
. 14+ tan’a =sec’A. Q.E.D.

So, 1+#8/a’=c'/a’; [div. by o’

and ‘. cot A=bd/a, cscA=c/a, :

.. 14 cot'a=csc’A. Q.E.D.
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THEOR. 5. If A be any acute angle and B the complement
of A, then: 8inA=cosB, tanA=colB, 8€CA=cSCB.

B a

For -, in the right triangle aABc, formed as in theor. 1, A, B
are complementary acute angles,

and . sinA=a/e, and cosB=a/c, [df.
.. 8in A=Co08 B. Q.E.D.

So, - tana=a/b, and cotB=a/b, [df.
.. tanA =cot B. ‘ Q.E.D.

So, "."seca=¢/b, and cscB=¢/b, [df.
‘. 86CA=CSCB. . Q.E.D.

Nore. If the sine, tangent, and secant of an angle be called
its direct ratios, and the cosine, cotangent, and cosecant the
co-ratios, theor. 5 may be stated as follows: the direct ratios
of an angle are the co-ratios of its complement.

The words cosine, cotangent, and cosecant are but abbre-
viated forms for complemenbsine, complement-tangent, and
complement-secant ; ¢.e. for sine of complement, tangent of
complement, and secant of complement.

QUESTIONS.

1. Translate the equation sin*A+cos?a=1 into words,
and express its meaning as a theorem.

Solve this equation in turn for sin A and cos A, and trans-
late the resulting equations into theorems.

2. Translate the equation sec’A=1 +tan’A into words, -
and express its meanmg a8 a theorem.

Solve this equation in turn for sec A and tan A, and trans-
late the resulting equations into theorems.

So, the equation csc*a =1+ cot?a.
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3. Show that
sin A=tanA.cosA=tanA/sec A=cosa/cota,
csc A=sec A/tanA =cot A/cosA=cotA-secA,
‘cosA=cot A-sin A=cot A/csc A=sin A/tana,
SecA=c8C A/cobA=tanA/sin A=tanA-cscA,
tanAa=sgin A-sec A=sec A/cscA4,
cOt A =CO8A-C8CA=CSC A/8eC A.

Translate these equations into theorems.

4. Show that

. gin A =tan A/4/ (tan®a +1) = 4/(sec’a —1)/sec A,
cscA=4/(tan’A +1)/tan A =sec A/4/(sec’a —1),
cosA=cot A/4/(cot*a+1)=4/(csc’aA—1)/csc A,
sec A= 4/(cot’A +1)/cot A=cscAa/4/(csc’a —1),

"tana =sin A/4/(1 —sin'a) = 4/ (1 —cos*s)/cos A,
cotA=4/(1—sin*A)/sin A=cos A/4/(1—cos’A).

Translate these equations into theorems.

5. If the hypotenuse ¢ of a right triangle ABC have unit
length, show that the two legs a, b, have the lengths sina,
#/(1—sin®s), and thence find the values of tanaA, cota,
sec A, in terms of sin A.

~ So, show that the two legs @, &, have the lengths
A (1—cos's), cosa, and thence find the values of tana,
cotA, csca, in terms of cosa.

6. If the leg & of a right triangle ABc have unit length,
gshow that the leg @ and hypotenuse ¢ have the lengths tan a,
/ (tan’a+1), and thence find the values of sina, cosa,
seCA, CSCA, in terms of tan A.

7. With the values of the ratios of the angles 30°, 45°, 60°,
as found in examples 5, 6, page 3, find the values of A from
the equations: tana+cota=?2, sinA+cosa=42,

sin A - secA=4/3, cotA=2 cosa.
8. Find the other ratios of a
if sina=4, ifcosa=4$, iftana=4§, if cota=.
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§ 2. TRIGONOMETRIC TABLES.

The magnitude of an angle is commonly expressed in
degrees, minutes, and seconds, e.g. 68° 25’ 30", A degree is
the ninetieth part of a right angle ; a minute, the sixtieth
part of a degree ; a second, the sixtieth part of a minute.

In the computation of triangles and generally in operations
that involve angles, the angles themselves play no direct part,
but the six trigonometric ratios are always used. By methods
to be explained later, these ratios have been computed for
different angles and arranged in tables for convenient use.

In the small tables (pp. ix—xvI) both the ratios themselves,
the natural functions, and their logarithms, the logarithmic
functions, are given correct to four figures for angles differing
by ten minutes, from 0° ta 90°. If a logarithm be negative,
10 is added and the modified logarithm is given.

The two angles printed on one line are complementary
angles, and the direct functions of the one are the co-functions
of the other. Angles less than 45° are found at the left side of
the page, and the names of their functions at the top ; angles
greater than 45° are at the right side, and the names of their
functions at the bottom.

The functions of an angle given in the tables may be read
directly from the tables ; but those of an angle not so given
are found from those of the next less and next greater tabular
angles, on the principle that small differences of angles and
the corresponding small differences of functions, are very
nearly proportional.

E.g. . sin 25°=.4226, sin 25°10°=.4253, nearly, [table.
and sin 25°5'lies midway between sin 25° and sin 25° 10/,
.. sin 25° 5’ =.4239, nearly.
So, “.'log-tan 25°20'=9.6752, log-tan 25°30'=9.6785,
. log-tan 25° 22'=9.6752 + & (9.6785 —9.6752) = 9.6759.

If the functions be given in the table, then the angles may
be read directly ; but if not so given they may be found from
the next less and next greater tabular functions.
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E.g.-.-cos™.4253 =64° 50', cos!.4226=165°, [table.
.. cos™ 4239 =64° 50"+ 3§ 10'=64° 55",

So, *.'log-cot™9.6785=64°30", log-cot™9.6752=64° 40’,
.~ log-cot™ 9.6759 = 64° 40" — 4% - 10’ = 64° 38",

In the larger tables the decimals are carried to five, or six,
or seven places, the ratios are given for angles that differ by
one minute, or by ten seconds, or by one second, and there are
many labor-saving devices.

Of these devices, the most common is that of printing the
differences of consecutive logarithmic sines in a column at the
right of the column of sines, that of cosines at the right of
the column of cosines, and that of tangents and cotangents (the
same differences for both) between the columns of tangents
and cotangents. These differences are called the tabular dif-
ferences.

QUESTIONS.

From the table of natural functions, find :

1. sin 20°, 21°, 20°10, 20°20°, 79°18, 57°15'.

2. cos20°, 21°, 20°10, 20°20', 79°18, 57°15'.

3. tan 35°, 36°, 35°15', 35°25', 79°58', 25°36'.

4. cot 35°, 36°, 35°15', 35°25', 79°58’, 25°36'

From the table of logarithmic functions, find :

5. log-sin 20°, 21°, 20°10', 20°20°, 79°18, 57°15".

6. log-cos 20°, 21°, 20°10°, 20°20, 79°18, 57°15',

7. log-tan 35°, 36°, 35°15', 35°25', 79°58, 25°36'.

8. log-cot 35°, 36°, 35°15', 85°25', 79°58', 25°36'.

From the table of natural functions, find :

9. sin™'.2588, .2591, .2590, .9279, .9281, .9280.
10. cos™.9279, .9281, .9280, .2591, .2588, .2590.
11. tan—'.5022, .5059, .5035, .9217, .9271, .9250.
12. cot™ .9217, .9271, .9250, .5022, .5059, .5035.

From the table of logarithmic functions, find :
13. log-sin™ 8.5809, 8.5842, 8.5821, 9.9997, 9.9847.
14. log-cos™ 8.5809, 8.5842, 8.5821, 9.9997, 9.9847.
15. log-tan—'R.5812, 8.5845, 8.5831, 1.4188, 1.3071.
16. log-rot™* 5.5812, 8.5845, 8.5831, 1.4188, 1.3071.
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§8. THE SOLUTION OF RIGHT TRIANGLES.

Three parts, one being a side, are sufficient to determine a
plane triangle ; and the solution of a triangle consists in find-
ing the three unknown parts from the three that are given.

In a right triangle if a side and one other part be known,
the triangle may be solved by forming equations that involve
the two known parts and one unknown part, and solving these
equations for the unknown parts.

In general the work may be checked by forming independent
equations that involve the three computed parts, and which
cannot be true unless the work be correct. _

Let ABC be a right triangle then, whatever parts be given,
all the equations needed are found among these :

A+B=90° a'+0'=c,
sin A=a/c, cos A =b/c, tana=a/b,
_sin B=b/c, cos B =a/c, tanB=b/a.

b
c A c
c b b a ¢ a

B a C A c B B

There are four cases :
1. Given ¢, 4, the hypotenuse and an acute angle :

then B=90°—A, a=c-sina, b=c- cosA.

Checks: tanB=b/a, b*'=(c+a)(c—a), a'=(c+0b)(c—b).
2. Given b, A, a side and an acute angle :

then B=90°-4, c¢=b0/cosA, a=b-tanA.

Checks : cosB=a/c, b'=(c+a)(c—a), a'=(c+d)(c—2b).
3. Given ¢, b, the hypotenuse and a side :

then cosa=6/c, B=90°—4A, a=bd-tana.

Checks: cosB=a/c, b'=(c+a)(c—a), a'=(c+b)(c—0b).
4. Given a, b, the two sides about the right angle:

then tana=a/b, B=90°—4A, c=5/cosA.

Checks: cosB=a/c, b'=(c+a)(c—a), a&’=(c+b)(c—2d).
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E.g. let ¢c=125, A=40°; then B=90°—-40°=50°;
and, with natural functions, the work may take this form :

sin 40° =.6428 cos 40°=.7660
x 125 x 125
a=80.35. b=95.75.
check : tan 8=b/a, (c+8) (c—b)=a’
80.35)95.75 (1.1917 c=125
b= 95.75

tan 50°=1.1918 c+5=220.75 a=280.35
c—b= 29.25 x x 80.35

. ' —0"=6456.9370 a’=6456.1225
So, with logarithmic functions, the work may take this form :

log-sin 40°=9.8081 log-cos 40°=9.8843
log 125=2.0969 + log 125=2.0969 +
log @=1.9050, @=280.35 log =1.9812, 5=95.76
check: ¢=125
b= 95.76
¢+5=220.76 log, 2.3439 log ¢=1.9050
c—b= 2024 1.4660 x 2
log (¢”—&") =3.8099. log o*=3.8100.

Notke. The two solutions do not quite agree, and the checks
are not perfect ;-the defects arise from the unse of the small
tables. More exact results come from larger tables, that give
the ratios correct to five, six, or seven figures.

QUESTIONS,
Solve these right triangles, using natural functions, given :

1. ¢, 40 yds.; A, 30°. 2. ¢, 12.5 ft.; B, 68° 10.
3. b, 187 metres ; A, 55°20. 4. a, 7.57 in.; B, 9° 30"
5. b,18.5 ft.; ¢, 125 ft. 6. ¢, 37 mi.; a, 25.2 mi.

7. a, 59.3 yds.; b, 45.7 yds. 8. a,4ft. 6in.; 5, 12ft. 9. in.
Solve these right triangles, using logarithmic functions, given :
9, ¢, 127 ft.; A, 60°. 10. ¢, 18.7 yds.; B, 76° 15",
11. b, 45.9 yds.; A, 59° 15", 12. @, 18.3 chs.; B, 55° 12"
13. b, 597 m.; ¢, 676 m. 14. a, 1278 yds.; ¢, 1355 yds.
15. a, 27.85 in.; b, 5519 in.  16. a, 8539 ft.; 5, 2815 ft.
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§ 4. ISOSCELES AND OBLIQUE TRIANGLES.

In an isosceles triangle, the perpendicular from the vertex
to the base divides the triangle into two equal right triangles ;
and if two parts of one of these triangles be given, this tri-
angle may be solved, and so the whole triangle is solved.

If three parts of an oblique triangle be given, always includ-
ing a side, a perpendicular may fall from a vertex to the
opposite side and so divide the given triangle into two right
triangles, and by their solution the triangle is solved.

Let ABC be any oblique triangle, a, b, ¢ the sides opposite
theangles A, B, ¢ ; p the perpendicular oD from A toa; z, y
the segments cD, BD, of a.

A
H i
| !
! I
S b |p p
a x_| '00 !
B Yy cC D B D a@ ¢ D B x ¢

The statements below apply directly to the second of the
three figures ; but with slight modifications suggested by the
figures themselves, they apply to the other figures as well.

There are four cases:

1. Given a, b. ¢, the three sides :
then'.: p*+2’=%", p'+y’'=¢',

. ,tl_yﬁ:bﬂ_cl’
and " z+y=a,

sx—y=(0"-c")/a,

sz=§ [a+ (0= /a]l=(a"+ 8" — %) /2a,
and y=3[a—(8"-c")/a]=(a’-0"+c")/2a;
and two parts of each right triangle are known.

2. Given b, B, C, a side and two angles :
then, in the right triangle Acp, b and ¢ are known, and p and z

may be computed ;
and, in the right triangle ABD, p and B are known, and c and y
may be computed.
a=z+y, A=180°—(B+0C).
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3. Given ¢, a, B, two sides and the included angle :
then, in the right triangle ABD, ¢ and B are known, and p and
¥ may be computed ;
and, in the right triangle Acp, p is known, z=a—y, and b and
¢ may be computed.
A=180°—(B+C).
4. Given b, ¢, B, two sides and an opposite angle :
then, in the right triangle ABD, ¢ and B are known, and p and
y may be computed ;
and, in the right triangle Acp, 4 and p are known, and = and
¢ may be computed.
a=y+z, A=180°—(B+cC).

QUESTIONS.

Solve these isosceles triangles, given :

1. The sides 10 yards, and the base 16 yards.
The vertical angle 90°, and the base 10 yards.
The base 10 yards, and the base angles 70°.
The vertical angle 70°, and a side 12 yards.
The basge 18 yards, and a side 12 yards.

St o

6. If two sides and an angle opposite one of them be given,
b, ¢, B, the side ¢ is given in length and position both, & in po-
sition but not in length, & in length but not in position, and
b finds its position only as it swings about A as a hinge till its
lower end rests on the line of the base : if then the angle B be
acute, and if the swinging side & be shorter than the perpen-
dicular p, is a triangle possible ? is there a triangle if & be just
as long as p ? of what kind is it ? is there one triangle or two
if & be longer than p, but shorter than ¢ ? if & be just as long
asc? if b be longer than ¢ ? Draw figures to illustrate.

So, if B be right or obtuse ?

Solve these oblique triangles, given :
Y. a,13; b, 15 ¢, 17. 8. a, 357; b, 537 ; ¢, 135.
9.¢5; a, 7; B,65° 10. a,537;5, 753 ; ¢, 119°15'.
11. b, 30 ; B, 55° C,48°25'. 12. a,7.5; A, 84°; B, 42° 37",
13. b, 5, 10, 15, 20, 25 in turn ; ¢, 20 ; B, 30°.
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§ 5. HEIGHTS AND DISTANCES.

The plane of the horizon at any point on the earth’s surface
is the plane that is tangent to the surface, 7.e. to the surface
of still water, at that point; it would therefore be perpen-
dicular to the radius of the earth, if the earth were a perfect
sphere. The direction perpendicular to the horizon-plane is
determined by a plumb line ; it is a wertical line, and any
plane containing this line is a werfical plane. Any plane
parallel to the horizon-plane is a korizontal plane, and such a
plane may be determined by a spirit level.

An angle lying in a horizontal plane is a horizontal angle,
and an angle lying in a vertical plane is a vertical angle. The
vertical angle made with the horizontal plane by the line of
sight from the observer to any object is its angle of elevation
if the object be above the observer, and its angle of depression
if it be below him.

Ordinary field instruments measure horizontal and vertical
angles only. By distance is meant the horizontal distance,
uuless otherwise named ; and by keight is meant the vertical
distance of a point above or below the plane of observation.
A surveyor’s chain is four rods long and it is divided into a .
hundred links. Ten square chains make an acre.

To find the height above its base of a vertical column, AP,
whose base is accessible.

1. If the column AP stand on a horizontal plane :

From the base A measure any convenient distance Ao, and
the angle AoP;
and solve the right triangle Aop, for AP.
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2. If the column pq stand on an inclined plane :

Let P be the top of the column, @ the point at the base of the
column below P, and A a point below P in the hori-
zontal plane through the point of observation, o ;

measure any convenient distance Qo along the plane, and the
angles of elevation or depression A0P, A0Q;

solve the right triangles AoP, A0Q: then PQ=AP+AQ.

To find the distance from the observer, and the height above
its base, of an inaccessible but visible vertical column.

Let P be the top of the column, @ the base, B the position of
the observer, A the point vertically below P in the
horizontal plane through B ;

take any other convenient point of observation ¢, and
' measure the horizontal line Bc, the horizontal angles
ABC, ACB, and the vertical angles ABP, ABQ ;
solve the horizontal oblique triangle ABc for AB, and the
vertical right triangles ABP, ABQ for AP, AQ: then
PQ= AP+ AQ. ‘
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If the observer be in the same horizontal plane as the base,
the line BQ coincides with BA, and BAP is the only vertical
triangle to be computed.

To find the distance apart of two objects that are separated
by an impassable barrier.

1. If both objects be accessible :

Let &, ¥ be the two objects, and 6 the point of observation ;
measure the horizontal lines ¢E, 6F and the harizontal angle
EGF, and compute EF.

2. If both objects be inaccessible :

Let ¢, D be the two objects ; measure any convenient line AB
) and the horizontal angles ABC, ABD, BAC, BAD ;
in triangle ABD compute BD; in ABC compute BC; in BCD
compute CD.

This is the method of ¢riangulation ; AB is the base line.

QUESTIONS.

1. At 120 feet distance, and on a level with the foot of a
steeple, the angle of elevation of the top is 62° 27': find the
height. ' [230.08 feet.

2. From the top of a rock 326 feet above the sea, the angle
of depression of a ship’s hull is 25° 42’ : find the distance of
the ship. [677.38 feet.

3. A ladder 294 feet long standing in the street just reaches

a window 25 feet high on one side of the street, and 23 feet
high on the other side : how wide is the street ? [34.13 feet.
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4. From the top of a hill I observe two successive mile-
stones in the plain below, and in a straight line before me,
and find their angles of depression to be 5° 30’, 14° 20" : what
is the height of the hill ? [815.85 feet.

5. Two observers on the same side of a balloon, and in the
same vertical plane with it, are a mile apart, and find the
angles of elevation to be 17° and 68° 25’ respectively : what
is its height ? [1836 feet.

6. From the top of a mountain 1§ miles high, the dip of
the sea-horizon (angle of depression of sky-and-water line) is
1° 34' 40" : find the earth’s diameter, and the distance of the
sea-horizon.

7. What is the distance and the dip of the sea-horizon from
the top of a mountain 2§ miles high, the earth’s mean radius
being 3956 miles ? [2° 8’ 8".

8. If the dip of the sea-horizon be 1°, find the height of
the mountain, and the distance of the sea-horizon,

9. How far should a coin an inch in diameter be held from
the eye to subtend an angle of 1°?

10. Given the earth’s equatorial radius, 3962.76 miles, and
the angle this radius subtends at the sun, 8”.81 : find the dis-
tance of the earth from the sun. [92 780 000 miles nearly.

11. Find the distance across a river, if the base AB be 475
feet ; the angle 4, 90° ; the angle B, 57° 13’ 20", [737.68 feet.

12. Given ca, 131 feet 5 inches ; Bc, 109 feet 3 inches;
the angle ¢, 98° 34’ : what is the distance o ? [183 feet.

13. Two ships lying half a mile apart, each observes the
angle subtended by the other ship and a fort ; the angles are
found to be 56° 19" and 63° 14': find the distances of the
ships from the fort. [2525, 2710 feet.

14. Given the bage AB, 131} yards ; the angle BaD, 50° ; the
angle Bac, 85° 15’ ; the angle DBc, 38° 43'; the angle DBA, 94°
13': what is the distance cp ? Check the work by making
two distinct computations from the data. [129.99 yards.

2



18 THE RIGHT TRIANGLE. (1

§ 6. COMPASS SURVEYING.

In compass surveying, the bearing of a point is the hori-
zontal angle which the line of sight from the observer to the
point makes with the north-and-gouth line through the point
of observation. This angle is found by aid of the compass.

The latitude of a point is its distance north or south of a
given point. The latitude of a line is the length of its pro-
jection on a north-and-south line; and its departure is the
length of its projection on an east-and-west line.’

E.g. in the figure below, representing a field, the starting
point is A, the bearings of the lines AB, Bc- - ., taken
in order, are : s. 70° 20" E. (70° 20’ east from south),
8.10° 15’ E., N.55°35' E., N.18°45'w, s.40°55' w.,
8. 37° 15" w.;

and the lengths of these lines, in chains, are : 6.37, 4.28, 12.36,
14.96, 11.15, 8.00.

AN LE JE"
E

Y "
F F )l

) h

D /I D" D
A A
Bl B
c e

s ¢"e

Through all the points A, B-.+, are drawn north-and-
gouth lines, marked on the figure with arrows, and east-and-
west lines perpendicular to them. The north-and-south line
through the starting point A is distinguished as the meridian.

The latitude of AB is the length of AB', the projection of
AB on the meridian, and it is computed by multiplying 6.37,
the length of AB, by the cosine of 70° 20', the bearing of AB.
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So, the departure of AB is the length of B'B, 7.e. the prod-
uct of 6.37 by the sine of 70° 20'.

The latitude of the line Bc is the length of Bc”, i.e. the
product of 4.28 by the cosine of 10° 15', and the departure of
BC is the length of ¢"¢, 7.e. the product of 4.28 by the sine
of 10° 15’; and so for the latitudes and departures of the
other lines, as shown in the table below.

The meridian distance of a point is the distance of the
point east or west from the meridian, ‘and the double meridian
distance of a line is the sum of the meridian distances of its
ends.

E.g. the meridian distance of the point B is B'B, and that of
¢ is ¢'c, which is equal to B'B+¢"c.

So, the double meridian distance of the line AB is 0+B'B,
and that of Bc is B'B+C'c.

When a surveyor has run round a field, e.g. that which is
described above, and has found and set down the lengths and
bearings of the sides, he has next to compute the latitudes
and departures of the sides, the meridian distances of the cor-
ners, and the double meridian distances of the sides as shown
above. He is then ready to compute the areas of certain
trapezoids and right triangles, and finally the area of the
field ; and he takes care to set down his work in such form
that it can be easily understood and reviewed, generally in
the form of a table as below.

DIs- DOUBLE AREA.

BEARING. DEP M.D. D.M.D. LAT.

TANCE. ° 1 + -
AB|s. 70°20'E. | 6.37| 5.998 5.998/ 5.998 —2.144 -12.860
BC s, 10°15'E. | 4.28/ .761] 6.759| 12.757| —4.212 -58.782

cp N.55°85" E. | 12.86] 10.196| 16.955| 23.714| 6.985( 165.642
DE N. 18°45' w.| 14.96 —4.809| 12.146| 29.101| 14.166| 412.245
EF |3. 40°55' w.| 11.15| —7.808| 4.843| 16.989| —8.426 -143.149
FA (8. 87°16'w.| 8.00| -4.843| 0. 4.843| —6.369 —30.845

+577.887 —240.586
-240.586
837.801/2=168.6561 square chains=16.865 acres. ~ 337.301
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In this figure there are two right triangles AB'B, F¥'A and
four trapezoids BB'c'c, cC'D'D, DD'E'E, EE'F'F, 80 related that
the area of the polygon ABCDEF is the excess of the sum of
the two trapezoids cc’'D’'D, DD'E'E over the sum of the two tri-
angles and the other two trapezoids.

i.6. ABCDEF= — AB'B—BB'¢c'C+CC'D'D+DD'E'E—EE'F'F—FF'A
=34 [—aB"-B'B—B'¢’-(B'B+C'C)+C'D'- (c'c+D'D)
+D'E-(D'D+EE)—EF . (E'E+FF)—FA. -F¥]
and it remains only to compute the lines B, B'B- - -, and to
add, subtract, and multiply as shown below,

N \ .
| E |E
i
' A
F Fi ¥
A
D / D" D
A i
B B
1,
C S C"C

In detail the work may take this form :
1. To compute the latitudes and departures of the sides:

8. 70° 20" E. 8. 10°15' E. N. 55°385' E.
cosine sine cosine sine cosine sine
3365  .9417 .9840 1779 .5652 .8249
6.37 AB 6.37 4.28 BC 4.28 12.36 cp 12.36
-2.144 5.998 -4.212  .761 6.986 10.196

N. 18°45' w. s. 40°55" w. 8. 37°15' w.
cosine sine cosine sine cosine sine
.94694 .32143% - .15565  .6550 .7960 .6053
~ 14.96 DE 14.96 11.15 EF 11.15 8.00 FA 8.00
14.166 -4.809 -8.426 -7.303 -6.369 -4.843
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North latitudes, northings, are called positive ; south lati-
tudes, southings, negative. ~Kast departures, eastings, are
called positive ; west departures, westings, negative,

2. To compute the meridian distances:

B c D E F A
5.998 5.998 6.759 16.955 12.146 4.843
+ .761 +10.196 — 4.809 — 7.303 —4.843
6.759 16.955 12.146 4.843 0
3. To compute the double meridian distances :
AB BC cD DE EF FA
5.998 5.998 . 6.759 16.955 12.146 4.843

+6.759 +16.955 +12.146 4 4.843
12.757 23.714  29.101 16.989
4. To compute the doubdle areas :
ABB' BB'CCc cc'D'D DD'E'E  EEFF FFA
5.998  12.757  23.714 29,101 16.989  4.843
x~2.144 x-4.212 x*+6.985 x *14.166 x ~8.426 x ~6.369
-12.860 ~53.732 *+165.642 +412.245 -143.149 -30.845

QUESTIONS.

1. A surveyor, starting from A, runs N. 22° 37 E. 3.37
chains to B; thence N. 80° 24' E. 3.81 chains te ¢ ; thence s.
41°12' E. 5.29 chains to D ; thence s. 62° 45’ w. 6.22} chains
to £ : find the latitude and meridian distance of B, ¢, D, E
from A ; find the bearing and distance of A from E; find the
area of the field ABCDE.

2. Starting at A and chaining along the surface of the
ground, a surveyor runs N. 81° 10’ E. 48 chains to B, at an
elevation of 4° 15'; thence N. 26° 25’ w. 126 chains to c, at
an elevation of 3° 40’ ; thence s. 73° 50’ w. 45 chains to D,
at an elevation of 2° 40’ ; thence s. 60° E. 85 chains to E, at a
depression of 4° 15" : find the horizontal distances AB, BC, cD,
DE, and the heights of B, ¢, D, E above A ; find the bearing,
distance, and angle of depression, of A from E ; find the area
of the field ABCDE.
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II. GENERAL PROPERTIES OF PLANE ANGLES.

Hitherto the lengths of the sides of a triangle and the
magnitudes of the angles have been mainly considered, and
little attention has been paid to their directions; but greater
generality, as well as greater definiteness, is given to the
definitions and theorems of trigonometry if the lines and
angles be thought of as directed as well as measured.

Nor is this a new thing: in geography and navigation
longitudes are distinguished by the words east and wes?, and
latitudes by north and soutkh ; a surveyor speaks of his
northings and southings and of his eastings and westings,
and he writes down the bearings of his lines with the sig-
nificant letters N, s, E, W ; in physics the directions and inten-
sities of forces are represented by the directions and lengths
of lines.

Even the language is not new : the mathematician merely
makes use of the familiar algebraic words positive and nega-
~ tive as more convenient to him than the commoner words
north, south, east, west, up, down, right, left, forward,
baekward.

§1. DIRECTED LINES.

Hereafter every straight line will be regarded as having not
only position but direction also, meaning thereby that a point
moving along the line one way will be regarded as moving
forward, and a point moving along the line the other way as
moving backward. The direction of the line is agsumed to
be that of forward motion.

If a line represent a force or an actual motion, like that of
the winds and the tides, it has a natural direction ; otherwise
its direction may be assumed at will.

E.g. with a double-track east-and-west railway, the south
track may be used habitually by east-bound trains, and the
north track by west-bound trains. On the south track a
train moves forward when going east, and it goes west only
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. when backing. On the north track forward motion is west-
ward motion. The two tracks may be regarded as two par-
allel lines lying close together and having opposite directions.

A segment of a line is a limited portion of the line that
reaches from one point, the initial point of the segment, to
another point, the ferminal point. A segment is a positive
segment if it reach forward, in the direction of the line, and
“a negative segment if it reach backward.

It is convenient also to speak of the positive and negative
ends of a line, meaning by the positive end that end which
1is reached by going forward along the line, from any start-
ing point upon it, and by the negative end that end which
is reached by going backward.

E.g. if a north-and-south line be directed from south to
north, then the north-end is the positive end and the south
end is the negative end of the line; segments of this line
reaching northward are positive segments and segments reach-
ing southward are negative segments.

The direction of a line is indicated by an arrow, or by
‘-naming two of its points, the direction being from the point
first named towards the other. The direction of a segment
is shown by the order of the letters at its extremities, the
initial point being named first and the terminal point last.

F.g. the indefinite line oP has its positive direction from
0 to P, and the segment AB of the line oP is the segment
that reaches from the point A to the point B.

[ I + " " —
s T T

B o A P 'B

If two segments, not necessarily upon the same line, have
the same length and be both positive or both negative, they
are equal segments ; if they have the same length, and be one
positive and the other negative, they are opposite segments.

ADDITION OF SEGMENTS OF A STRAIGHT LINE.

Two or more segments of a straight line are added by
placing the initial point of the second segment upon the
terminal of the first, the initial point of the third segment
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upon the terminal of the second, and so on ; and the sum of
all the segments so added is the segment that reaches from
the first initial to the last terminal point. "When a positive
segment is added, the terminal point slides forward ; when
a negative segment is added, it slides backward.
E.g. in the figures below,
AB+BA:==0, AB+BC=AC, AB+BC+CA=0,
AB+BC+CD=AD, AB+BC+CD+DA=0.

A 'B C D

B c D TA
(4] A 'B D

This addition is analogous to the addition of like numbers,
positive and negative, in algebra.

One segment is subtracted from another by adding the op-
posite of the subtrahend to the minuend, or by placing the
initial point of the subtrahend upon that of.the minuend ;
the remainder is then the segment that reaches from the ter-
minal point of the subtrahend to that of the minuend.

QUESTIONS.

1. If from a given starting point one man walk east and
another west, each a hundred yards, how far apart are the
two men ? how far, and in what direction, is the first man
from the second ? the second man from the first ?

2. If the river run five miles an hour, how fast does a boat
go, with the current, if the crew can row four miles an hour
in still water ? against the current ?

3. If longitudes alone be under consideration, and west
longitudes be marked +, how may east longitudes be marked ?
how may north and south latitudes be then distinguished ?

4. If a traveller go east 50 miles, then west 30 miles, then
west 60 miles, then east 20 miles, how far has he gone ? and

w far, and in what direction, is he from the starting point ?
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§2. DIRECTED PLANES AND ANGLES.

Hereafter every plane will be regarded as having direction,
meaning thereby that a line swinging about a point in the
plane one way will be regarded as swinging forward, and a line
swinging the other way as swinging backward. The direc-
tion of the plane is that of the forward motion of the line.

If the swinging line has a natural motion like that of the
hands of a clock, or a spoke of the fly-wheel of an engine, or
an equatorial radius of the earth, then the direction of the
plane is determined by this motion ; otherwise its direction
may be assumed at will.

This swinging motion, as viewed from one side of the
plane, is clockwise, i.e. left-over-right, and counter-clockwise,
i.e. right-over-left, as viewed from the other side.

E.g. the apparent daily motion of the sun, as seen by an ob-
server in the northern hemisphere, is clockwise,

and as seen by one in the southern hemisphere it is counter-
clockwise ;

but to-both of them it is the same east-to-west motion, and the
plane of the sun’s apparent path is an east-to-west plane.

So, the real motion of an equatorial radius of the earth is
counter-clockwise if viewed from a point in the
northern hemisphere,

and clockwise if from a point in the southern hemisphere ;

but it is the same west-to-east motion, and the plane of the
equator is a west-to-east plane, whose direction is
opposite to that of the sun’s apparent path.

An observer to whom forward motion appears counter-clock-
wise is in front of the plane, and looks at its face ; one to
whom forward motion appears clockwise is back of the plane.
E.g. the plane of the equator faces northward, and points in

the northern hemisphere are in front of it ;
but the plane of the sun’s apparent path faces southward.

In plane trigonometry the reader always looks at the face
of his plane, and to him, therefore, forward motion is always
counter-clockwise motion.
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DIRECTED ANGLES.

A plane angle has been variously defined as ¢‘ the opening
between two lines,” as ¢ the inclination of one line to another,”
as ‘“ the difference of direction of two lines,” and as ‘“the por-
tion of the plane between the two lines.” The words ‘¢incli-
nation ” und ¢ difference of direction” appear to define the
magnitude of the angle rather than the angle itself; but
whichever of these definitions be used, it is manifest that an
angle may be generated by swinging a line, in the plane of
the angle, about the vertex, from one of its bounding lines to
the other. The first position of the swinging line is the 7ni-
tial line, and the last position is the terminal line, of the angle.

E.g. the minute-hand of a clock generates a right angle every
fifteen minutes, and four right angles in an hour.

If the generating line swing forward, in the direction of
the plane, it generates a positive angle ; if it swing backward,
it generates a negative angle.

Since, in plane trigonometry, the reader always looks at the
face of his plane, it follows that positive angles are counter-
clockwise angles, and negative angles are clockwise angles.

The angle of two lines is the smaller of the two angles
which lie between their positive ends and reaches from the posi-
tive end of the line first named to the positive end of the other.
E.g. if the two lines A’A, B'B cross at 0, the angle of the two

lines A’A, B'B is A0B, and the angle of the two lines B'B,
A'A is BOA.

A B B . A
m m l
[} ; o P
B A A B

The two bounding lines may be designated by single letters,
the initial line being named first.
E.g. if I, m stand for the two lines A’A, B'B, then /m stands
for the angle A0B and m! for the angle BoA.
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NORMALS.

* One line is normal to another if the first line make a posi-
tive'right angle with the other.

E.g. in the figures below, 0B is normal to 0, but not 0a to oB.

A A

EQUAL AND CONGRUENT ANGLES.

If two angles differ by one or more complete revolutions,
they are congruent ; if, when placed one on the other, their
initial lines coincide and their terminal lines coincide, they
are equal or congruent.

e

E.g. in the figures above all the angles A0B, whether positive
or negative, are congruent,

and the angles A0oB, A'0B’ are equal, but not A0B, B'oA’".
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The smallest angle, positive or negative, of a series of con-
gruent angles is the primary angle ; and the primary angle
is always meant if no other be indicated. It is always smaller
than two right angles.

QUESTIONS.

1. If a surveyor by mistake write N. 30° E. 12 chains,
instead of N. 830° w. 12 chains, what is his error ? and what
is the effect, in his map, on the position of every subsequent
line and point ?

2. If the line a be normal to the line 4, what angle does
b make witha ?

3. Through what angle has the hour-hand of a clock swept
from 12 midnight to 12 noon ? the minute-hand ? the second-
hand ?

4. If the moon revolve about the earth once in four weeks,
what is its angular motion in a year ? in a day ?

5. How great is the angular motion of the earth upon its
own axis in a day ? in an hour ? in a year ?

So, how great is its angular motion in its orbit about the
sun in a year ? in a day ? in a century ?

6. What is the angle between a north wind and a north-
east wind ? a north wind and a southwest wind ?

7. If the current carry a chip due south, and the wind
carry a feather due east, what is the angle between the arrows
that show the directions of the motions of the chip and the
feather ?

8. If two forces act upon a body, the one vertical and the

other horizontal, what is the angle between them ? its sign ?

9. If three equal forces acting upon a body be parallel to
the three sides of an equilateral triangle, what are the
angles between them ? Discuss the eight possible cases.

10. If the two hands of a clock start together at noon,

what is the angle between them at one o’clock ? at two ? at
three ? at six ? at nine ? at twelve ?
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ADDITION OF CO-PLANAR ANGLES.

Two or more co-planar angles are added by placing the ini-
tial line of the second angle upon the terminal of the first, the
initial line of the third angle upon the terminal of the second,
and so on ; and the sum of all the angles so added is one of
the congruent angles reaching from the first initial to the last
terminal line. This definition applies whether the vertices
of the angles be at the same point or at different points.

When a positive angle is added, the terminal line swings
forward ; when a negative angle is added, it swings backward.

E.g. in the figures below,

1
d a d
c 'd b
b c a
a > b > c -
f
Vv
c, /r
b c
a . b
7 / T 7 7 > 7

@b+ ba=0 (or one of the congruents of 0), ab+dbc=ac,
ab+bc+ca=0, ab+bc+cd=ad, ab+bc+cd+da=0.
One plane angle is subtracted from another by adding
the opposite of the first angle to the other, or by placing the
initial line of the first angle upon that of the second; the
remainder is then the angle that reaches from the terminal
line of the first angle to that of the other.
If the sum of two angles be a positive right angle, either
angle is the complement of the other; and if their sum be two
right angles, either angle is the supplement of the other.
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QUESTIONS.

1. Show what angles must be added to the angles below to
make the sums positive right angles, and so construct thei¥
complements.

AL\;_L/;‘ @\.@g_

&d \“’“ﬁrTé
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2. Show what angles must be added to these angles to make
the sums two positive right angles, and so construct their
supplements.

3. Show that the angle of two lines equa.ls the angle of
any normals to them.

4. If a surveyor, in running round a field, turn at the cor-
ners always to the left, what is the sum of the exterior angles
of the field ? if he turn always to the right ? if he turn some-
times to the right and sometimes to the left ?

£ - Nyl

5. If the wind shift from north to northeast, and then
from northeast to southeast, through what angle has it
shifted ?
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§ 3. PROJECTIONS.

The orthogonal projection of a point upon a line is the foot
of the perpendicular from the point to the line ; and, in this
book, by projection is always meant orthogonal projection.
The line on which the projection is made is the line of pro-
jection, and the perpendicular is the projecting line.

The projection of a segment of one directed line upon
another directed line is the segment of the second line that
reaches from the projection of the initial point of the given
segment to the projection of its terminal point. The projec-
tion is positive if it reach forward in the direction of the line
of projection, and negative if it reach backward ; its sign
may be like or unlike that of the projected segment.

.E.g. the shadow of a post on a plane perpendicular to the
sun’s rays is an orthogonal projection of the post.

Projections upon the same line are like projections.

THEOR. 1. If segments of one directed line be projected upon
another such line, the ratios of the projections to the segments
are equal.

Let I, m, be any two directed lines; take AB, cD, EF-..
segments of m, and let A'B’, ¢'D’, E'F'... be their
projections on 7 ;

then will A'B'’/AB=¢'D'/CcD=E'F'/EF. - -

For -.* the projecting lines AA’, BB'- - . are all parallel,
and contrary segments of the same line have contrary pro-
jections on another line,

.. the segments and their projections are proportional ;
t.e. A'B'/AB =cC'D'/cD=E'F//EF=04A'/0A=0¥ /OF--., both
in magnitude and sigp- Q.E.D.
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In the first figure the segments AB, EF are positive, and so
are their projections A'B’, E'F/, but cD, ¢'D’ are negative, and
all the ratios are positive. In the other figure AB, ¢'D’, EF
are positive, but A'B', cD, E'F' are negative, and all the ratios
are negative ; ¢.e. the ratios are positive if the primary angle

of the two lines be acute, positive or negative ; they are nega-
tive if the primary angle be obtuse.

Cor. 1. Equal segments of one line have equal projections
on another line, and opposite segments have opposite projections. .

Cor. 2. If on each of two directed lines equal segments of
the other line be projected, the projections are equal.

E.g.let I, m be any two lines, AB a segment of /, and cp,
EF segments of m equal to AB,
let A’B’ be the projection of AB on m and ¢'D’, E'F' the projec-
tions of ¢D, EF on /,
then A'B’, ¢'D’, E'F are equal in magnitude and sign.
In the first figure the segments and their projections are all

positive ; in the other figure the segments are negative, and
their projections are positive.

Cor. 3. If there be two equal angles, and if equal segments
of the bounding lines be projected, each upon the other bound-
tng line of its angle, these projections are equal.

For the two figures may be placed one upon the other, and
then cor.3 becomes a case of cor. 2.
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QUESTIONS.

1. A line is 5 feet long and its projection on another line,
a, is 4 feet long : how long is its projection on a normal to a ?
Can the signs of the projections be found from the data ?

2. If a, b be two directed lines at right angles to each
other, how long is that segment whose projections on a, & are
5 feet and 12 feet ? —5 feet and —12 feet ?

Can the sign of the segment be found from the data ?

3. Construct lines so that segments of one being projected
on the other, the ratios of the projections to the segments
shallbe 1, %, 4, 4, 3 % 0; -3, —3% —% —1,in turn,

4. A pole ten feet long points northward and makes an
angle of 45° with the level ground : how long is its shadow,
if the sun be directly overhead ?

So, how long is its shadow on a north-and-south wall, at
sunrise, if the sun rise due east ?

Of these two shadows, which is the longer ?

So, which is the longer if the inclination be 60° ?

From what point of view would the pole appear to be ver-
tical ? from what point horizontal ?

5. Describe an isosceles triangle by walking due east 100
yards, then northwest 70.7 yards, then southwest 70.7 yards,
thus giving direction to the sides.

Project the two sides of this triangle upon the base : what
relation have these two projections ?

So, project these two sides upon the bisector of the vertical
angle : what relation have the two projections now ?

6. In an equilateral triangle, whose sides are directed by
walking about it and turning to the left at the vertices, how
do the projections of the sides upon the base compare in
length ? in sign ?

So, the projections upon a normal to the base ?

7. Can a segment of a line be so projected upon another
line, that the projection is longer than the segment itself ?

8. Taking note of signs, what is the range of magnitude
for the ratio projection/segment ? segment/projection ?

8
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§ 4. TRIGONOMETRIC RATIOS.

If a segment of the terminal line of an angle be projected
upon the initial line and upon a normal to the initial line,
the first projection may be called the major projection of the
segment, the other the minor projection, and the ratios of
these two projections to the segment and to each other are
named as below :

minor projection/segment, the sine of the angle,
major projection/segment, the cosine,
minor projection/major projection, the tangent,
major projection/minor projection, the cofangent,
segment/major projection, the secant,
segment/minor projection, the cosecant.

These definitions apply to all angles whatever their magni-

tudes or signs, and they include as a special case the defini-
tions given on page 2.
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E.g. in the figures above, let X0oP be any angle « ; let 0Y be
normal to the initial line 0X, 7 any segment of the ter-
minal line OP, z, y the major and minor projections of r ;

then sina=y/r, cosa=z/r, tana=y/z,
csca=r/y, seca=r/x, cota= x/y
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The segment r may be taken positive or negative ; for if
the segment be reversed both projections are reversed, and
the ratios are nnchanged.

Two other functions in common use are the wversed sine
and coversed sine ; they are defined by the equations

versa=1—-cosa, coversa=1-—sina.

QUESTIONS.
1. How do the major and minor projections of the seg-
ment of a line compare in length with the segment itself ?
how with each other ?

2. Can the sine of an angle be larger than 1? as large as
1? smaller than 1? can the sine be naught ? the cosine?

3. Can the tangent of an angle be naught? can it be
smaller than 1 ? as large as 1 ? larger than 1 ? how large may
the tangent be ? the cotangent ? the secant ? the cosecant ?

4. What relations as to sign have a segment and its pro-
jections ? Draw figures in which :
all three are positive ; all three negative ;
the segment and major projection are positive and the
minor projection negative ;
the segment is negative and both projections positive.
5. If two lines be parallel and like directed, what is their
angle? How long is the major projection of a segment of
one of these lines as to the other? the minor projection ?
What are the ratios of this angle ?
So, if two parallel lines have opposite directions ?
So, if the terminal line be normal to the initial line?
So, if the initial line be normal to the terminal line ?
6. Construct the angles 4R, —3R, $R,—$R, R, —4§R .
and find their ratios. [R=a right angle.
Which of these angles have the same sines? the same
cosines ? the same tangents? the same secants ?
So, for the angles }R,—1R, %R,—%R, 4R, -4%R, R,—%R.
7. Construct sin—*},—%, 8, 1, 0; cos™§,=x},—1;
tan—'3, 4, 0,—1, oo; cot?},—4, =1
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ANGLES IN THE FOUR QUARTERS.

If there be two lines such that the second line is normal
to the first, the plane of these lines is divided into four quar-
ters. The first quarter lies between the positive ends of the
two lines, the second quarter between the positive end of the
normal and the negative end of the first line, the ¢third quar-
ter between their negative ends, the fourth quarter between
the negative end of the normal and the positive end of the
first line.

An angle is an anglein the first quarter, in the second quar-
ter, in the third quarter, or in the fourth quarter, according
as its terminal line lies in the first, second, third, or fourth
quarter, counting from the initial line.

It is therefore an angle in the first quarter if its primary
congruent angle be a positive acute angle ; in the second
quarter, if a positive obtuse angle ; in the third quarter, if a
negative obtuse angle; in the fourth quarter, if a negative

acute angle.
L // 7/
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E.g. of the figures above, the first angle and the eighth are
angles in the first quarter,

the second and seventh are angles in the second quarter,

the third and sixth are angles in the third quarter,
nrth and fifth are angles in the fourth quarter.

AN

b4




2, §4.] TRIGONOMETRIC RATIOS. 37

POSITIVE AND NEGATIVE RATIOS.

THEOR. 2. The trigonometric ratios of an angle in the first
quarter are all positive.

The sine and cosecant of an angle in the second quarter are
positive ; the cosine, secant, tangent, cotangent are negative.

The tangent and cotangent of an angle in the third quarter
are positive ; the sine, cosecant, cosine, secant are negative.

The cosine and secant of an angle in the fourth quarter are
positive ; the sine, cosecant, tangent, cotangent are negative.
For if r be taken positive, and z, y be the major and minor

projections of r;
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then . in the first quarter r, z, y are all positive,
‘. the ratios y/r, r/y, x/r, r/x, y/x, z/y, are all
positive ;
and ‘. in the second quarter r, y are positive, and = negative,
‘. the ratios y/r, r/y are positive, the rest negative ;
and . in the third quarter r is positive, and z, y negative,
.. the ratios y/z, z/y are positive, the rest negative ;
and - in the fourth quarter r, x are positive, and y negative,
.. the ratios z/r, r/x are positive, the rest negative.
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QUESTIONS.

Show what quarters these angles lie in, and what signs their
ratios have : [R = a right angle.

. 3R, —3R, §R,—3R, §R,—§R, JFR,—JR---

. 3B, —}R, §R,—§R, IR, —JR, R, —LlR...

. 4R, —4R, 4R,—4%R, §R,—$§R, 4PR,—1'R...

. 100°, 200°, 300° 400°, 500°, 600°, 700°, 800°, 900°.
5. -165° -365°, -563°, ~765°, -965°, -1165° -1365°

Construct the angles below, and find the values of :
6. sin 225°, 585°, 810°, 960°, -225°, -585°, -960°.
7. cos 315° 675°, 960°, 1110°, -315°, -675°, -1110°.
8. tan 495°, 945° 1110°, 1260°, -495°, -945°, ~1260°.
9. cot 675°, 1035°, 1260°, 1410°, -675°, ~1035°, ~1410°.
10. sec 855°, 1215°, 1410°, 1560°, -855°, ~1215°, ~1560°.
11. csc1035°, 1395°, 1560°, 1710°, -1035°, ~1395°, ~1710°.

[y
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§5. RELATIONS OF RATIOS OF A SINGLE ANGLE.

THEOR. 3. The square of a segment is the sum of the
squares of its projections on a line and a normal to the line.

YA 5 P . Y
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For these projections are equal to the sides of a right tri.
angle whose hypotenuse is the given segment.



3,4, §5.] RELATIONS OF RATIOS OF A SINGLE ANGLE. 39

THEOR. 4. If a be any plane angle, then :
sina-csca=1, cosa-seca=1, tana-cota=1;
tan a=sinajcosa, cola=cosa/sina;
sin‘a+cos’a=1, secta=1+tan'a, cscla=1+cot’a.
For let r stand for any segment of the terminal line of the
angle, and z, y for its major and minor projections ;
then'."sin a=y/r, cosa=z/r, tan a=y/z,
csca=r/y, seca=r/z, cota=z/y, [af.
S8ina.csca=1, cosa-seca=1, tana-.-cota=1;
and sin a/cosa=y/r:z/r=y/z=tana,
cos a/sin a=z/r :y/r=z/y=cot a.
So, . 2'+y'=1", [theor. 3.
L2+ y/rr=1, 14y /2 =r"/2', 2/y+1=1r/y,
i.e. cos’a+sin'a=1, 1+tan’a=sec’a, cot’a+1=csc'a.
Cor. If a be any plane angle, then :

sina= cos a= tan a= cot a= seca= csca=

sina y(1—sinia) 1 1
y(1—sin’a) sin a y(l—sn'a)l sna
¥ (1—cos'a) cos 1 1

sina y(1—sinia)

y(1—cos’a) cosa

cos y(1—cos*a) cos a y(1—cos*a)

7 tf;::+ O tan}a ) tan a iana y(tan?a +1) v (tl::;:x +1)
2
V(cot’la +1) V(ctcz(t)!t: +1) oo:_a cota V(ac)«[;ta; . ¥ (cotta +1)
A (szca’:z— 1) ¢W1¢_x y(secta—1) V(seol’a— 5 sec _—V(::;':— 35
2 Y .
aw%i V(G:‘;c”‘a = V(cscl’a—l) y(cscta—1) v (:::92:— | o«

The proof of these equations is left as an exercise for the
pupil, but certain relations may be noted :
The values of the cosecant set down in the sixth column are
reciprocals of those of the sine in the first,
those of the secant in the fifth column of those of the cosine
in the second,
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and those of the cotangent in the fourth column of those of
the tangent in the third.

The values of the tangent and cotangent set down in the third
and fourth columns are quotients of the values of the
sine and cosine in the first and second columns.

QUESTIONS,

1. For a given value of the sine, how many values has the
cosecant ? the cosine ? the secant ? the tangent ? the cotan-
gent ?

What signs have the radicals in each of the four quarters ?

2. For a given value of the cosecant, how many values has
each of the other five ratios ?

3. So, for a given value of the cosine ? of the secant ? of
the tangent ? of the cotangent ?

4. Construct the two angles whose sines are +§, and show
that the two cosines are +4 and — 4.

5. Construct the two angles whose cosines are —4, and
show that the two sines are +§ and —3.

6. Construct the two angles whose tangents are +3}, and
thence show the double values of the sine, the cosecant, the
cosine, the secant, and the single value of the cotangent.

7. Show that the formule of the corollary to theor. 4, taken
two and two, are symmetric :
those for sine, in terms of cosine, tangent, secant,. - .

with those for cosine, in terms of sine, cotangent,- - -;
those for tangent, in terms of sine, cosine, secant, - - -

with those for cotangent, in terms of cosine, sine,- - -;
those for secant, in terms of sine, cosine, tangent,- - .

with those for cosecant, in terms of cosine, sine, - - -.

8. Show that the formul® proved in examples 3, 4, page 7,
hold true with the broader definitions of the trigonometric
ratios, given on page 34.

9. Show that the methods of proof shown in examples 5, 6,
page 7, apply to the formul in the corollary to theor. 4.
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§ 6. RATIOS OF RELATED ANGLES.
THE RATIOS OF OPPOSITE ANGLES.

THEOR. 5. If a be any plane angle, then :
sin(—a)=—sina, cos(—a)=+cosa,
tan(—a)=—tana, cot(—a)=—cota,
sec (—a)=+seca, csc(—a)=—csca.

For, let xop, X0P' be any opposite angles a, —a, having the

same vertex 0, the same initial line 0xX, and the termi-
nal lines op, OP’ symmetric as to 0x ;

draw oY normal to 0x and oY’ opposite to o¥.

On op, op' take equal segments r, 7' and let their major and
minor projections, 7.e. their projections on ox, oy, be

zYy Z,¥;
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then'.’ the angles XoP, P'0X are equal, and so are the seg-

ments r, 7/, [constr.

.". the projections of r, ' on 0X are equal. [theor. 1, cor. 3.
So, . the angles poY, Y'0P’ are equal,
.. the projection of r on oY equals the projection of '
on oY, and is the opposite of the projection of 7’ on
oY [theor. 1, cor. 1.
e ~r=r, z=a, y=-y,
svsin(—a), =y'/r'=—y/r, = —sina,
cos (—a), =z'/r'=z/r, =cosa;
and so for the rest.
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THE RATIOS OF THE COMPLEMENT OF AN ANGLE.
THEOR. 6. If a be any plane angle, then :
8N co-a=cos a, cCO0ScCO-a=8ina, tan co-a=cot a,
c8C co-a=S8ec a, 8ec co-a=csc a, cCot co-a=tan a.

For let XoP be any angle « ; draw oY normal to ox, and op'
making the angle P'0Y equal to xoP ;

Y\ /P' P P Y
y T 7 ] 4
@' £\ I x e @ \ x!
: 0o X (o] —T.i
1 A !
A Y |
Y YA P’ Y 1
7 , , !
Yy Yy ™\ 1
i
) rl rl yl |
Y P
| h 7
[} S
-~ |
.'/- A | ! \\ >
x Mo T& X - & o ! 2 X
1/ ,
i
T / Y b/ r |
4 . o

P P’

then',” X0p'+ P'OY=R, XOP+POY=R, P'0Y=XOP, [constr.
.. XOP' =co-a = POY.
On op, o' take r, ' equal segments, and let their major ana
minor projections, 7.e. their projections on ox, oy,
be z, y, ', y';
then'." XoP, P'0Y are equal angles, and so are XoP, POY,
.. the major projection of r equals the minor projection
of 7,
and the minor projection of 7 equals the major projection
of '
.6 r=r, z=y, y=a,
.. 8in co-a, =y'/r'=z/r, =cos a ; and so for the rest.
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THE RATIOS OF R+a.
THEOR. 7. If a be any plane angle, and & a right angle,

then: sin(R+a)=cosa, cos(R+a)=—sina,
tan(R+a)=—cota, cot(R+a)=—tana,
sec (R+a)= —csca, ¢sc(R+a)=seca.

Let xop be any angle a, draw oY normal to 0X, op’ normal to
oP, and 0X' opposite to 0X ; then X0P'=R +a.

On op, oP’ take equal segments r, 7', andlet their major and
minor projections be z, y, 2, ¥';

\P’ AY /PV P . AY
) y T r y
- Vsl S
XA = - @ | N\
O™ X ¥ =Tyl %
! i
v (Y
Y'\( P VY'
LY Y4 AP'
x ®' '  ol/\ @ R
g < ,,'/:i X X' i ] E X
| 1 S
7 v ‘ I v L
J s r v
Y Y P
Y'Y P Yy

then'." XoP, YOP' are equal angles,
.. the projection of » on ox equals that of 7' on oy
and *. PoY, P'ox’ are equal angles,
.. the projection of » on oY equals that of 7' on 0x’, and
is the opposite of the projection of 7' on 0X ;
te. r=r, z=y, y=-72';
s 8in (R+a),=y'/r'=2z/r,=cos a ; and so for the rest.
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THE RATIOS OF THE SUPPLEMENT OF AN ANGLE.

THEOR. 8. If a be any plane angle, then :
sin sup a=8in a, €08 sup a= —cos a,
tan sup a= —tan a, cot sup a= —cot a,
sec sup a=-—sec a, C€SC SUP a=csc a.

Let xop be any plane angle a, draw oY normal to 0x, and ox’
opposite to 0X ;

draw op’, making the angle P'ox’ equal to a ;

P’ AY AY F;
: P P
r' / ' T’
—l > ul
i et > < <At | S
x' x! 0 x X X @ o x’ x
, AY , ' AY
X x 0 x X X =z o x X
) LA h AN g
———] " 1.
T ylY_ T L % r
P P
P P
then", xoP' + P'oX’=2R, and Xor="P'0X/, [constr.

.. XOoP, XOP' are supplementary angles.
On op, oF, take equal segments , 7', and let their major and
minor projections, ¢.e. their projections on 0x, oy, he
Ty 2,y
then-.: xoP, P'oX’ are equal angles,
.. the projection of » on 0x equals that of ' on oX’, and
is the opposite of the projection of 7' on 0x ;
and ' POY, YOP' are equal angles, |
.. the projections of r, ' on oY are equal ;
ie. r=r, z=-2, y=y';
~osinsup a,=y'/r'=y/r,=sin a,
cos sup a,=2'/r' = —z/r,=—cos a;
and so for the rest. Q.E.D.
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THE RATIOS OF 2R+ a.

THEOR. 9. If a be any plane angle, and R a right angle,
then : 8in(RR+a)=—sin a, cos(2R+a)= —cosa,
tan(RR+a)=tan a, cot (RR + a) =cot a,
sec (RR+ a) = —sec a, csc(2R+a) = —csc a.
Let xop be any plane angle «; draw oY normal to ox, op’
opposite to op ;

Y} P, Y
7, r ] v
e A SN & X
/a/ 3} x X x o\ }\i .
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Y /B'ﬁ - {' 1Y
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] d ? / [3 X x o 3
r y y ?”
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then"." pop'=2&,
.. X0P'=2R+a.
On op, op' take equal segments r, #, and let their major and
minor projections, 7.e. their projections on oX, 0Y, be
Yy %95
then-.' r, ' are opposite segments of op,
.. their major projections are opposite, and so are their
minor projections ;
ie. r=r, z=-2, y=-y';
~.8in RR+a),=y'/r'= —y/r,= —sin a,
co8 (RR+ a),=2'/r'= —z/r,= —cos a;
and so for the rest. Q.E.D.
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QUESTIONS.

1. Given the ratios of §r: by aid of theors. 5-9, find the
ratios of $R, §R, 4R.--, and of —§R, —§R, —§R, —FR - --.

2. Given the ratios of 3Rr: find those of R, 4R, §R -,
and of —}R, —%R, —4R, —§R - - .

3. Given the ratios of rR: find those of 0, 2R, 3R, 4R - -,
and of —R, —2R, —3R, —4R - - -.
Find the ratios of R+ a, as the complement of — a.
Find the ratios of 2R + a, as the supplement of —a.
Find the ratios of «—R, as the opposite of co-a.
Find the ratios of 3R+ a, and of 3R —a.
Find the ratios of 2R — a, as the complement of a—R.
Find the ratios of 4R + a, as supplement of —(2R+a).
10. Given cos a=4%: find sin~'}, sin-'—4.
11. Given csc a=? : find sec~'2, sec~!—2.

© PSSR

12. What angles have the same sine as « ? the same cosine?
the same tangent ? the same secant ? the same cosecant ?

In ratios of positive angles less than R, express the values of :
- 13. sin 135° 335°, -535°, -735° %R, ~%#R, &R, ~§§R.
14. cos 35°, 435°, -635°, -835° 2R, ~31m, 38R, ~$}R.
15. tan 335°, 535°, -735° -935° 3LR, 38R, 3R, “}IR.
16. cot 435°, 635°, -835° -1035°, 3R, ~3fR, 3R, ~$IR.
17. sec 535°, 735°, -935° -1135°, S8R, ~31R, 32R, ~4IR.
18. csc 635°, 835°, ~1035°, ~1235°, 31p, -32R, 4LR, ~$}R.

In ratios of positive angles not greater than }R, express the
values of : )

19. sin 50°, 150°, -250°, -350° %R, ~4R.
20. cos 60° 160°, ~260°, ~360°, f4R, ~LiR.
21. tan 70°, 170°, -270°, -370° LR, ~L8R.
22. cot 80°, 180°, -280°, -380° 4R, ~6R.
23. sec 90°, 190°, -290°, -390°, }4R, ~2LR.
24. ¢s¢100°, 200°, ~300°, -400°, }§R, ~3#R.
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§ 7. PROJECTION OF A BROKEN LINE.

The projection of a broken line upon a straight line is the
sum of-the projections upon it of the segments that consti-
tute the broken line, and it is identical with the like projec-
tion of the single segment that reaches from the initial to the
terminal point of the broken line.

Y AL LV

;1" B/ \, ///'/

(ol . > C
ol / 2 /° " L
{1/~ pF— 0\
e N,L E%

THEOR. 10. The major projection of a segment of a line is
equal to the product of the segment by the cosine of the angle
the line makes with the line of projection ; and the minor pro-
jection 13 equal to the product of the segment by the sine of this
angle. [df. sine, cosine.

Cor. The major projection of a broken line is the sum of
the products of the segments each by the cosine of the angle its
line makes with the line of projection, and the minor projec-
tion is the sum of their products by the sines of these angles.
E.g. in the figure above, let the broken line ABCDEF -be

formed by the segments AB, Bc, ¢D - -., of the lines
AL, BM, CN - - -, )
let a, B, y ---¢ stand for the angles 0X-AL, 0X-BM, 0X-CN
-+ +OX-AF.
then maj-proj ABCDEF=A'B'+B'¢'+¢C'D'- - -
=ABCOsa+BCcos B+CDcosy- - -
=A'F'=AF cos ¢,
and min-projABCDEF=A"B"+B"¢”"+¢"D". .-
=ABsina+BCsin f+CDsiny---

"o

=A"F"=AF sin ¢.
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§ 8. RATIOS OF THE SUM, AND OF THE DIFFERENCE,
OF TWO ANGLES.

THEOR. 11. If a, B be any two plane angles, then :
sin (a+ f)=8in a cos B+cos asin B,
sin (a— ) =sin acos f—cos a sin G,
cos (a+ ) =cos acos f—sin asin B, -
cos (a— B)=cos a cos B+ sin a sin f.
For, let xop, PoQ be any two plane angles a, B, so placed

that their vertices coincide, and the terminal line, op,
of a, is the initial line of £}

then xoQ=a+g.

On oq take any segment oc, and draw CR normal to op at B ;

by RN AQ Y R
C C
P P
B B
e A |
Y X /’ X
o
Y R Q Y
C C
P
ol&— > >
QA X j X
_____ B Q
P

then'.’ the major projection of oc, as to 0X, equals the like
projection of the broken line oBc,

t.e.  Maj-proj 0C=maj-proj oB + maj-proj Bc, [df.
.". maj-proj 0c/0c =maj-proj 0B/0C + maj-proj Bc/oc
=maj-proj 0B/0B - 0B/0C + maj-proj BC/BC- BC/0C.
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But maj-proj oc/oc =cos X0Q=cos (a+ 8), [df.
" maj-proj 0B/0B=cos XOP=Co0s « ;
and *. 0B, BC are the major and minor projections of oc, as
to op,
.. 0B/0C=cos POQ=cos8 S,
BC/0C =sin PoQ=sin g ;
and ‘. angle 0X-BR=XOP + PBR=a + B,
.". maj-proj BC/BC=cos0X-BR=cos(a+R)= —sina,[th.7.
.. cos (a+ ) =cos a cos §—sin a sin . Q.E.D.
And‘. , 8 may be any plane angles positive, or negative,
and a—pg=a+(—p) whatever the sign or magnitude of 8,
.. cos (a— ) =cos a cos (— ) —sin a sin (— B) [af.
=cosacos §+s8inasin f. Q.E.D. [theor.5.

So, °.’ the minor projection of oc equals the like projection
of the broken line oBc,
.. min-proj 0¢/0C = min-proj 0B/0c + min-proj Bc/oc
=min-proj 0B/0B-0B/0C + min-proj Bc/BC - BC/0C,
~.8in (a+ B)=sin a cos f+sin (R+a) sin g

=sin & cos B+ cos a sin g, Q.E.D.
and sin (a—ﬂ)-—sinacos( —fB)+cos asin (- g),
=sgin a cos f—cos asin S. Q.E.D.

Cor. 1. tan (a+ p)=(tan a+tan B)/(1—tan a tan ),
tan (a— @)= (tan a—tan B)/(1+tan a tan B).
For tan (a+ g)=sin (a+ f)/cos(a+ L) [theor.4.
=(sin @ cos B+ cos a sin B)/(cos a cos B—sin a sin f).
Divide both terms of this fraction by cos « cos §;
then tan(a+ B)=(tan a+tan 8)/(1—tan atan g) ;
and so for tan (a— g). Q.E.D.
CoRr. 2. sin(a+ ) +sin (a—B)=2R sin a cos S,
sin (a+ B) —sin (a— B)=2 cos a sin S,
cos (a+ B) +cos (a—B) =2 cos a cos S,
cos (a+ ) —cos (a—fB)=—2sin asin f.
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CONVERSION FORMULZE.

THEOR. 12. If a, B be any two plane angles, then :
sin a+sin f=2 sing (a+ L) cos 3 (a—p),
sina—sin =2cos} (a+p)sin (a—p),
cos a+co8 B=2cos} (a+ B) cos ¥ (a— ),
cos a—cos f=—2sin} (a+p) sing (a—p).

For let y, 6 be two plane angles such that
y=4(a+f) snd 6= (a—f),
then, y+d=a, and y—-06=46,
and " sin (y + 6) +sin (y —6) =2sin y cos 8, [theor.11, cor.2,
c.sina+sin f=2sin§ (a+ ) cos (a—g) ;
and so for the other formuls. Q.E.D.

QUESTIONS.

1. Given sin «=.3, sin $=.6 : find sin (a+ B), sin (a—g),
cos (a+ f), cos (e — M), each correct to three decimal places.

2. From the sine and cosine of 30° and 45°, find the ratios
of 15° and 75°, then those of 105°, 165°, 195°, 255°, 285°, 345°.

3. Remembering the ratios of ‘0, R, 2R - - -, verify theors.
5-9, by aid of theor.11. What is the defect in this proof ?

4. If «, B be any plane angles, then

sin (a+ ) -sin (a — B) =sin’a —sin’ = cos’f — cos’a,
cos(a+ f)-cos (a— B) =cos’a—sin’f=cos’f —sin’a.

5. Divide the values of sin (a+ £), sin (a— £), cos (a+ 8),
cos (a— f), each in turn by cos a cos g, sin @ sin 8, sin & cos B,
cos a sin f, and express the results in terms of tan a, tan g.

6. Show that, with a, 8 each smaller than two right angles,
there -may be thirty-two distinct figures to illustrate theor.11,
each differing from the rest in some important particular.
E.g. a, 8, a+ B may all be pbsitive acute angles, or a, £

may be positive acute angles, and a + § an obtuse angle.
7. If sina=sinf and cosa=cosf prove that
cos (a— B) =1, and so that a, g are either equal or congruent.
8. Prove that cos a+cos (120°+ a) +cos (120° — ) =0.
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9.
10.

11.

12.

13.

14.
15.
16.

17.

18.
So,
19.
20.
21.

Prove that sin®10°—cos® 190° =cos 200°,
If A, B, ¢, D be any four plane angles, then
sin (A —B) sin(0—D) +sin(B—C) sin (A —D)
+sin(c—A4) sin(B—D)=0.
Let a, B, ¥, - -+ A be any plane angles, then
cos (a+ B)sin (a—g) +cos (B+y)sin(f—y)+---
+cos (A +a)sin (A —a)=0.
Solve the equation cos3a+cos2a+cosa=0.
[Ba=2a+a, a=2a-—a.
Prove the identity [tTa=4a+3a, ba=da+a---
sin a+8in 3a+sin 5+ sin 7a =4 sin 4a cos 2a cos a.
Given tan =4, tan #=4$: find tan (a+ £).
Given tan a=4, tan $=1, tan y =3: find tan (a+ S+ y).
Show that sin 28°+sin 14° =2 sin 21° cos 7°,
8in 28° —sin 14° =2 cos 21° sin 7°,
co0s 28° +c0s814°=2 cosR1° cos 7°,
cos 28° —cos 14°= —28in 21°8in 7°,
sin 80° —sin 20° = cos 50°,
sin 75° —sin 45° =sin 15°.
In terms of tangents and cotangents find the values of:
(sin & +sin B)/(cos a + cos B),
(sin & —sin B)/(cos a + cos £),
(sin & +sin G)/(cos a —cos £),
(sin & —sin B)/(cos a —cos f),
(sin a +sin B)/(sin a—sin g),
(cos a+cos B) /(cos a—cos ).
Given a=60°, =45°: find tan 52° 30’, tan7° 30’. [th.12.
given a=45° #=30°: find tan 37°30',tan7°30".
Given sin 150 =.25882, sin 45° = /§: find cos 60°, cos 30°,
Given cos 75°=.25882 : find sin 30°.
Given cos817°=.9563, sin23°=.3907: find tan 6°, tan

40°, sin20°, cos 3%
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§9. RATIOS OF DOUBLE ANGLES AND OF HALF ANGLES.
THEOR. 13. If a be any plane angle, then :
sina=2 sin a cos a=2tan a/(1+tan*a),
cos 2a=cos'a — sin*a
=2cos'a—1
=1-2sin'a
=(1-tan*a)/(1+tan'a),
tan2a=2tan a/(1—tan‘a).
For sin2a=sin (a+a)
=sina cos a+cos a sin a [theor.11.
=2sinacosa; Q.E.D.
=(2sin a/cos &) - cos’a
=2 tan a/sec’a
=2 tan a/(1 + tan'a). [theor.4.
So, cos2a=cos(a+a)

=cos & cos a —sin a'sin ar [theor.11.
=cos’a—sin'a; ‘ Q.E.D.

and cosRa=cos’a—(1—cos'a)
=2cos'a—1; Q.E.D. [theor.4.

and cosRa=(1—sin'a)—sin'a
=1-2sin'a; Q.E.D,
and cos?2a=(cos’a/cos’a —sin*a/cos'a)- cos'a
=(1—tan’a)/sec’a
=(1-tan’a)/(1+ tan’a). Q.E.D. [theor.4.
So, tanRa=tan (a+a)
= (tan @ +tan a)/(1 —tan a tan a), [th.11, cor.1.
=2tan a/(1—tan'a). Q.E.D.
Cor. sina=2sinia cosia,
cosa=2cos* ta—1=1-2 sin’ }a, [theor.4.
1+cos a=2 cos* $a,
1—cos a=2 sin® a.
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THEOR. 14. If a be any plane angle, then :
sinta=y3(1l—cos a),
cos $a= 41 +cos a),
tanta=sin a/(1+ cos @)
=(1—cosa)/sina

=/ [(1—cos a)/(1+cos @)].

For *» 2sin’4a =1—-cos a, [theor.13, cor.
.~ sinfa=y$(1—cos a). . Q.E.D.
So, ".-2cos*4a=1+cos a, [theor.13, cor.
. cos fa=y/4(1+cos a). Q.E.D.
So, .’ tan4a=gin $«/cos $a, [theor.4.
- tan $a=28in $a cosda/2 cos' fa
=gina/(1+cosa); Q.E.D. [theor.13, cor.
and tan4a=2sin'4a/2sinta costa
=(1—cos &)/sin a. Q.E.D.
So, tanda=+4(1—cosa)/y3(1+cosa)
=#[(1—cos a)/(1+cos a)]. Q.E.D.
QUESTIONS.

1. From the known value of cos 30°, find the ratios of 15°;
from cos 15° find the ratios of 7°30'; from cos 7° 30’ find the
ratios of 3°45', and so on, each correct to four decimal places,
If A+B+C=2R, then:

2. sin2A +sin2B+sin2c = 4sin A sinB sinc.

3. sinA+sin B+8in C=4cos A cos $B cos 3C.

4. co8A+cosB+cosC=4sinFA sin§B sin{c+1.
Prove the identities : .

5. csc2a+cotRa=cota; cosa=cos'}a—sin}a.
tan a+cot a=2csc2a; tan a—cot a= —2 cot2a.
tan (R — §a) +cot (3R —fa) =2seca.

(cos a +sin a)/(cos @ —sin &) =tan 2a + sec 2a.
tan® (JR+§a)=(sec & +tan a)/(sec « —tan a).

© w2 o



b4 GENERAL PROPERTIES OF PLANE ANGLES. [II, TH.

§10. RATIOS OF THE SUM OF THREE OR MORE ANGLES,
AND OF MULTIPLE ANGLES.
THEOR. 15. If a, B, y be any three plane angles, then :
sin (a+ B+ y)=sin a cos B cos y +sin f cos y cos a
+8in y cos a cos f—sin a 8in B siny
=cosa cos 3 cos y (tan a+tan f+tan y —tana tanf tany).
cos (a+ B+ y)=cos a cos 8 cos y —cos a sin  sin y
—cosf siny Sitna—cosy sina sin f§ .
=cosacosfcosy (1—tanf tany —tany tan a—tan a tan G).
tan a+t'an/3+t¢m y—tan a tan B tan y
1—tanf tany —tany tana—tana tan 5
Prove by expanding sin (a+ 8+ y), cos (a+ S+ y). [th. 11.
Cor. 1. If a, B, y, -+ - be any plane angles, then :
sin(a+pf+y---)/cosa cosf cosy---
=Stana—tana tan B lany+ .- -,
cos(a+pB+y--+)/cosacosfcosy---
=1-Stana tanB+Stana tan B tany tand ...,
wherein Stana stands for the sum of the tangents of all

the angles, Stanatang for the sum of their products taken
two and two, and so on. Prove by induction.

tan (a+B+y)=

CoR. 2. sin3a=3sin a cos®a—sin*a=38 sin a —4 sin‘a,
c08 3a=cos’a—3 cos a 8tn*a= —3 cos a+4 cos’a,
stnda=4 8in a cosla—4 sin*a cos a
=4 8in a co8 a—8 sin*a cos a,
c0s 4a=cos*a — 6 sin*a costa + sin‘a
=1—-8cos*a+8cos‘a,
sinna=mnsin a cos"'a
—in (n—1)(n—2) sin’*a cos®*a+ - ..,
cosna=cos"a—3}n (n—1)sin'a cos®*a+ ...,
wherein the coefficients in the value of sin na are those of the
second, fourth ... terms of the expansion of (a+&)*; and
those in the value of cos na are the first, third - - . terms of
the same expansion. Prove by induction.
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QUESTIONS.

1. If @, B, y be any three plane angles, then :
—sin (a+B+y)+sin(—a+B+y)+sin(a—-F+y)
+8in (a+ B —y)=4sin asin Bsiny.
cos(a+p+y)+cos(—a+B+y)+cos(a—L+y)
+cos(a+ f—y)=4cos acos Bcos y.
If A+B+C=2R, then:
2. tanfAtan§B+taniBtan{c+tanfctanfa=1.
cot A +cot B+ cot ¢c=cot A cot B cot c+csc A csc BescC.
tan A 4 tan B+ tan c=tan A tan B tan c.
tan3a=(sina+sin3 a +sinda)/(cosa+cos3 a +cosba).

S o

If a, 8 be any two plane angles, and % any integer, then:
[sin a+sin (a+ B) +sin (a +26) +sin (a+38) ++ - -
+sin (a+7—-1p)]-2sin 8
= cos (a—§ B) —cos (a+n—} ),
[cos a+cos (a+ B) +cos (a+20) +cos (a+30)+ -«
+cos (a+n—1p)]-2sin 4B
=sin (a +n—§B) —sin (a —§ f).

7. From the results of ex. 6, prove that : [# any pos. integer.
sin @+sin (a+4Rr/n)+ -+ - +sin [ +4R(2—1)/n] =0,
cos a+cos(a+4r/n)+ - - - +cos[a+4r(n—1)/n]=0.

8. In the results of ex. 7, take =3, and prove that :

sin a +8in 60° — a —sin 60°+a =0,

cos a — cos 60° — a —c0s 60° + a =0,
9. In the results of ex. 7, take #=>5, and prove that :
sin a+8in 72° + & +8in 36° — & —sin 36° + a@ —sin 72° —a =0,
cos a+co872° + a —cos36° — a —cos36° + a +cos 72° — a=0.
10. Show that when #=3 the formula found in ex. 7 veri-

fies the sines and cosines of all angles in the first quarter, if
to a be given values from 0° to 30°.

11. In the results of ex. 7, take n=9, 15, 25, 27, 45, in turn,
and thence find other formula of verification.
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§11. INVERSE FUNCTIONS.

If o be a number, and « an angle such that a=sin «, this
relation is expressed by the equation «=sin-'a, which is read
a is the anti-sine of a.  So, the equation S=cos~'d means
that g is an angle whose cosine is b, and ¥ =tan-'¢c, that y
is an angle whose tangent is ¢.

It is to be noted that, while the equations a=sina, d=cosg,
c=tan y, give a, b, ¢ single values for single values of a, £, y,
the equations a=sin~'a, S=cos~'d, y=tan-'c givea, §, y
many values for single values of a, 4, ¢: for a, 2R— a, and all
the congruents of these angles have the same sine ; 8, — 8, and
all their congruents have the same cosine ; and y, 2R+ y, and
all their congruents have the same tangent.

E.g. sin-4=30° 150° 390°, 510°... —210° —330°....
So, cos~'y/$=45° —45° 315°, —315° -...
So, tan~'4/3=60°, 240°, 420°, 600°... —120°, —300°,-.-.

Many of the theorems of trigonometry may be expressed in
terms of inverse functions ; and sometimes with advantage.

E.g. if z, y, # stand for the sines of the angles a, 8, v,
then sin (a+@)=sina cos S+sin f cos @, may be written
sin—'zxsin~'y=sin"'[z¢/(1—-9") +y¥/ (1—2")].
So, sin(a+fB+y)=sina cos 8 cos y +sin B cos y cosa
+8in y cos & cos —sin & sin @ sin y, may be written
sin~'z+sin~'y+sin~! z=sin"'[z/(1-y*' -2+ 9 2*)
+yN(1—22—2*+22*) + 24/ (1 — 2" — y* + 2* y*) —2y2].
So, sin2a=2sinacosa, may be written
2sin~'z=sin"'[224/ (1—2Y)].
So, sinda=44(l—cosa) may be written
4sin~'z=sin"'/$[1-¥(1-2%].
These relations are always true :
gin-'z=csc'1/®, cos~'z=sec~'1l/z, tan-'z=cot-'1/z,
sin-'z+cos '2=R, sec~'z+cs¢c 'z=R, tan~'z+cot-'z=R.
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QUESTIONS.

Translate these formuls into inverse forms :

1.

Lol o

o o

cos (a= ) =cos a cos fFsin a sin B.
tan (a = 8) = (tan a+tan )/(1+tan « tan B).
cos 2a=cos’a —sin'a=2 cos’a —1=1-2sin'a.
tan 2a=2 tan /(1 — tan’a).
cos $a=4/4(1+cos a).
tan $a=sin a/(1+cos a)
=(1—cos a)/sin a
=4[(1—cosa)/(1+cos a)].

7. cos (a+ f+ y)=cos a cos 8 cos y —sin a sin B cos ¥
—sin £ sin ¥ cos a—sin y sin a cos g.
8. tan (a+6+y)
_ tana+4tan f+tan y —tan a tan B tany
T 1—tana tan f—tan B tan y —tan y tan a
9. cos 3a=cos’a—3 cos a sin*a.
10. tan3a=(3 tan & —tan'a)/(1 -3 tan'a).
Show that
11. sin-'§+sin-'$=R; cos~'fH+cos ' }§=R;
tan-'#+tan-'4=Rr.
12. sin (3sin~'z)=32—42" [z any proper fraction.
cos(3cos'z)=—3x+4a" '
tan (3 tan—'2) = (3 z—2%):(1—3aY). [z any number.
13. tan~-'4+tan-'3=4Rr. [Euler.
14. tan~'4+tan-'}+tan-'=14=. [Dase.
16. 2tan-'§+tan~'4=4R. [Hutton.
16. 4tan-'}—tan-'gly=%R. [Machin.
17. 4tan-! $—tan-'Js+tan-'gy=4R. [Rutherford.
18. 5tan-'}+Rtan~'f;=4R. [Euler.

Solve the equations :

19.
20.

sin-'3z+sin-'4z=R.
tan-'22+tan-'3x=4R.
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§12. GRAPHIC REPRESENTATION OF TRIGONOMETRIC
RATIOS.
Let xP be any arc with centre 0 and radius 0X, and let PY be
the arc complementary to xp;
through p, X draw AP, XT normal to 0X, and through v, pdraw
BY, PT' normal to op, with T on oP and T' on oY
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then AP, 0A, XT, OT are the sine, cosine, tangent, and secant of
the arc xp;

and BY, OB, PT’, OT' are the sine, cosine, tangent, and secant of
the complementary arc PY, and the cosine, sine, cotan-
gent, and cosecant of the arc xp.

These lines are called line-functions of arcs as distinguished
from the ratio-functions of angles ; and if they be divided by
the radius, the ratios so found are the ratio-functions hereto-
fore defined. With arcs of the same radius the ratios of their
line-functions are equal to the ratios of the like ratio-func-
tions of their angles.
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CURVE OF SINES."

Let 0x be the radius of a circle, and divide the circumference
into any convenient parts at p;, Py- - -}

<P o
P G

e Ths

O A Ay X B) By By L
7
/1
1 —

draw A,P,, A,P,- - - normal to 0X, and sines of the arcs xp,,
XPg- - ¢}

upon ox lay off xB,, XB,- - - equal to the arcs 'XP,, XPy- - 3

at By, B,- - - erect perpendiculars to 0x and take ¢, c,- - - such

"that B,C;=A;P;, ByCs=A,P; -}

through c,,c, - - - draw a smooth curve ; it is the curve of sines,
and the following relations are manifest :

The sine is 0 for the angle 0 ;

is nearly as long as the arc for a small angle ;

increases more and more slowly ;

is equal to the radius, and its ratio is +1, its maximum, for a
right angle ;

decreases, at first slowly, but faster and faster as the angle
approaches two right angles;

is 0 for two right angles ;

decreases from 0 to the opposite of the radius, and its ratio is
—1, its minimum, as the angle grows from two right
angles to three ;

increases to 0 as the angle grows from three right angles to
four;

is again O at the end of the first revolution; and so on.

The sine has all values between the radius and its opposite.

If the revolution be continuous, the values of the sine are
periodic, every successive revolution indicating a mew cycle
and a new wave in the curve. The sines are equal for pairs
of angles symmetric about the normal at o.
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OTHER TRIGONOMETRIC CURVES.

The tangent is 0 for the angle 0
increases through the first quarter to +o0; leaps to —o;
increases through the second quarter to 0 ;
increases through the third quarter to + oo ; leaps to —0 ;
increases through the fourth quarter to 0 ; and so on.
The tangent has all values from —o to +o. Tangentsare
equal for pairs of angles that differ by a half revolution.
The secant is equal to the radius, and its ratio is +1 for the
angle 0 ;
increases through the first quarter to +o ; leaps to —
increases through the second quarter to the opposite of the
radius, and its ratio is —1; ’
decreases through the third quarter to —oo ; leaps to + a0 ;
decreases through the fourth quarter to the value at the begin-
ning ; and so on.
The secant has no value smaller than the radius. Secants
are equal for pairs of angles symmetric as to the initial line.

The cosine, cotangent, cosecant have the same bounds as the
sine, tangent, secant ; they go through like changes and are
represented by like curves ; but they begin, for the angle 0,
with different values, viz., the radius, o, .

QUESTIONS.

1. Show directly from the definitions what are the largest
and what the smallest values that each function may have, and
state for what angles the several functions take these values.

So, what are the greatest and what the least values.

2. Draw the curve of tangents, curve of secants, curve of
cosines, curve of cotangents, and curve of cosecants.

8. Trace the changes, when « increases from 0 to 4R, in:
sina+cosa, tana+cota, sina+csca,
sina—cosa, tana—cota, sina—csca.
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QUESTIONS FOR REVIEW,

1. Find sec (axf), csc (a¢=f) in the ratios of « and f.

2. Given tan1°30'=.0262 : find tan 21°, tan 24°, cot 21°,
cot 24°.

Show that : .
3. cos2a=2 (sin @ +4R) (sin @ +§R). '
4. sin(B+y—a)+sin(y+a—g)+sin (a+-y)
—sin (a+ B+ y)=4sin a sin 8 sin y.
5. cos’ (B —y)+cos’ (y —a) +cos* (a— f)
=1+2 cos (B—y) cos (y —a) cos (a—f).
6. tan a+tan S=sin (a+ B)/cos a cos B.
7. tan} (a+ B)=(sin @ +sin f)/(cos a +cos B).
Solve these equations :
8. 4sin fsin36=1.
9. 8in36—sin #=0.
10. tan @+ tan 20=tan 36.
11. cos f—sin A= /%.
12. 8cos @ +sin0=2.
Trace the changes in sign and magnitude as 6 grows from 0 to
4R, in:
13. cos?26/cos 6.
14. sin 6 —sin 46.
15. tan 6+cot 6.
16. sin 6+sin 20 +sin 46.
Prove the equations :
17. tan-' & +2tan-'4=tan"'4.
18. cot~'2+csc'4/10=4Rr.
19. sin~'z+tan-' (1—2)=2tan"'y/ (z—2%).
20. sin~![2z/(1+2%)] +tan-' [2z/(1 —2*)]=R.
21. If tan$0=tan’44, and tan =2 tan a, then .+ ¢=2a.
22. If sin (z+a)/sin (z+ )= 4/ (sin 2a/8in 26),
then tan*z=tan « tan g.
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III. PLANE TRIANGLES.

§1. THE GENERAL TRIANGLE.

Let a, b, ¢ be any three directed lines that meet each other,
b,cata, c,aatB, a,batc, thefiguresoformed isa plane
triangle, ABC.

. c e 5/
v N/

Of the eight figures shown here, the first may be called the
ideal triangle : its sides, taken in order, and followed in their
positive directions each till it crosses the next one, form a
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closed figure, and the primary angles bc, ca, ab are all posi-
tive. In going round the other figures from vertex to vertex
in order, some of the sides must be followed in their negative
directions and some of the angles are negative. Such triangles
may be called deformed triangles.

The eight figures show all the possible ways of describing a
plane triangle : for each side must be traversed in one of two
ways, forward or backward ; and the two ways of describing
the first side may be combined at will with the two ways of
describing the second side, and these 2-2 ways, with the two
ways of describing the third side, making 2-2-2 ways of de-
scribing the three sides.

If a, B, y stand for the exterior angles of the triangle, ¢.e.
for the angles bc, ca, ab, then, in the ideal triangle, a, 8, ¥
are the supplements of the interior angles, A, B, ¢, commonly
called the angles of the triangle, and their sum is four right
angles. In the deformed triangles the sum of @, 8, y is some
congruent of four right angles.

QUESTIONS.

1. What is the effect on the values of the sides and angles
of an ideal triangle, of reversing the direction of one of the
bounding lines ? of reversing two of the bounding lines ? of
reversing all three of them ? of keeping the directions fixed
and moving one bounding line parallel to itself, to a position
equally distant from, and on the other side of, the opposite
vertex ? of turning over the plane of the triangle ?

2. If a man, walking around a triangular field, ABc, start
at A, walk to B, turn to the left so as to face ¢, walk to ¢, turn
to the left so as to face A, walk to A, turn to the left so as to
face B, through what angle has he turned ?

3. So, if, starting from A and going about the field, he face
in the direction BA, and walk backward from A to B having
the field on his right, then, facing in the direction ¢B, walk
backward to c, then, facing in the direction ac, walk back-
ward to A, through what angle has he turned ?
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§2. GENERAL PROPERTIES OF PLANE TRIANGLES.

The discussions below apply directly to the ideal triangle,
but with due attention to signs they apply to the deformed
triangles as well.

The letters a, b, ¢ have a double use : first as the names of
the indefinite directed bounding lines of the triangle, second
as the segments BC, CA, AB, of these bounding lines. These
segments are the sides of the triangle.

E.g. in the statement « is the angle b¢ the indefinite lines
b, ¢ are meant and « is their angle ;
but in the equation a*'=8"+c*+Rbccosa a, b, ¢ are the
measured and directed sides.
The context always shows clearly which use is intended.

LAW OF COSINES.

THEOR. 1. If a, b, ¢ be the sides of a plane triangle, and
a, B, y the angles be, ca, ab, then :
a*=b"+c*+2bccos a, .
b*=c*+a*+2cacos S,
c=a'+b"+2abcosy.
For, project the closed broken line a+&+¢ on a;

Y

oy &8

=

c b
2/1\ ,‘7\,\\ X ' >
BT I a ¢ X X
- then'.' Zab=y, Zac=-2,
s.a+bcosy+ccos (—pB)=0, [1I, theor. 10.
t.e. a+bcosy+ccos §=0. [I1, theor. 5.

B

So, b+ccosa+acosy=0, [project @+&+c on b.
~and c+acosfB+bcosa=0. [project @ +5&+c on c.
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Multiply the first of these equations by —a, the second by &,
the third by ¢, and add ;

then —a*+8*+c*+ccosa=0, i.e. a'=b+c*+0bccosa;
For the second formula multiply by @,—5, ¢ and add, and
for the third multiply by a, b, —c¢ and add.
CoR. 1. cosfa=/[(s—0) (8—¢)/bc]. [Rs=a+b+c.
For *r2cos*ja=1+cos a
=1+ (a*-8"—c*)/2bc
=(a*—b"+Rbc—c*)/bc
=[a*— (b—c)*]/Rbc
=(@a—b+c) (a+b—c)/2c
=4(8—0) (s—c)/bc,
s.cosya=[(8—-b)(s—e¢)/bc]. Q.E.D.
CoRr. 2. stnja=+[8(s—a)/bc].
For " 2sin*{a=1—cosa
=1-(a*—8*-c*)/2bc
=(8"+bc+c*—a*)/2be
=[(d+c)*—a*]/Rbc
=(b+c+a)(b+c—a)/ec
=4s (s—a)/Rbc,
. singa=[s (s—a)/bc]. Q.E.D.
Con. 3. cot a=+[(s—0b) (s—¢)/s(s—a)].

Cor. 4. If a, b, ¢, a, B, y be the parts of an ideal triangle,
and if A, B, C be the interior angles of the triangle, then :

cosA = (b*+c* — a*) /Rbc,

singa= A [(s—b) (8—¢)/be],

cos A= 4/[8(s—a)/bc],

tanga=y[(s—b) (s—¢)/3 (s—a)].
For *." @, A are supplementary angles,

. 4a, A are complementary angles,

and cosa= —cosA, cosja=sinja,

sin {;05: cos A, cotFa=tanza.
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LAW OF SINES.
THEOR. 2. If a, b, ¢ be the sides of a plane triangle, and
a, B, y be the angles be, ca, ab, then : -
a/sin a=>b/sin f=c/sin y.
For, draw any normal to @ and project the closed broken line
@ +b+c on this normal ;

B A
_/3/,’ N a c\x xyﬁ YJrN a c\

then'.: Zab=y, Zac=-p8,
and the projection of a on its normal is naught,
».0+bsin y+csin (—£)=0,
Sb-siny=c-sin g,
.. b/sin B=c/siny.
So, ¢/siny=a/sina, [project @ + &+ ¢ on a normal to b.
and a/sina=&/sin B. [project @+ &+ ¢ onanormal to c.

CoRr. 1. (a+8)/c=cos}(a—pB)/cos}y.
(@—b)/c= —siny(a—B)/sinLy.
For . a/c=sin a/siny, b/c=sinB/siny, [above.
< (@+d)/c=(sin a+sin B)/sin y
=2sin §(a + f) cos(a— B)/2sin}y cosy
=cos §(a— B)/cos §y. [3(a+ B)=supty.
So, (@—b)/c=(sin a—sin B)/siny
=2cos§(a+ B)sin§(a— B)/2sin}y cosy
= —sin g(a— B)/sin }y.
Cor. 2. (a—b)/(a+b)= —tan y(a—f)/tan}y.
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Cor. 3. If a, b, ¢, a, B, y be the parts of an ideal triangle,
and if A, B, C be the interior angles of the triangle, then :

a/8ina=05/8tnB=c/sinc,
(6+0)/c=cos $(A—B)/sin ic,
(a—b)/c=sin $(A —B)/cos %c,
(a—0)/(a+b) =tan ¥ (Ao —B)/cot $c.
For - a, A aresupplementary angles, and so are G, B and y, ¢,
< 4(a— )= —4(a—3), |
and 3y, 4c are complementary,
~.8ina=sinA, sinf=sinB, siny=sinc,
cos{y=sin4c, sindy=cosdc, cot}y=tanio,
tan 4(a — ) = —tan (A —B).

-

QUESTIONS.
1. What is the value, in terms of a, 8, ¢, of ¢
cos B, cos4fB, sini4f, cotip?
cosB, s8in3B, cos4B, tan4B?
cosy, cosdy, sindy, cotiy?
cos c, singc, cos4c, tan dc?
2. What signs are to be given to the radicals in theor. 1,
cors. 1, 2, 3, in case of an ideal triangle ?

3. Show that the values of cos4a, sina, --. areimpos.
sible if one side be greater than the sum of the other two.

In an ideal triangle ABC:
4. cos$A cosdB/sin4c=g/c.
cos 4A sin 4B/cos 4c=(s—a)/c.
sin A cos 4B/cos 4c=(s—d)/c.
sin }A sin }B/sin Joc=(s—¢)/c.
8. acosB+bcosa=c; acosB—bhcosAa=(a"—0%/c.

9. @acosB co8C+bcosC CoOSA+CCOSA cosB
=asin B sin c=54sin ¢ sin A =c¢sin A sin B.

10. acosA+bcosB+ccosc=RasinBsinCc=----
11. asin (B—c) +bsin (¢—A) +c¢sin (A—B)=0.

2 oo
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§8. SOLUTION OF PLANE TRIANGLES.

ProB. 1. TO SOLVE AN OBLIQUE PLANE TRIANGLE.

Apply such of the formule of theors. 1, 2, and their corollaries,
as serve to express the values of the unknown parts in
terms of the known parts.

CHECK : Form an equation involving the three computed parts ;
but use no part in the same way in the solution and the
check.

Cases of the general triangle appear in discussing the rela-
tions of coplanar forces in mechanics, in particular when one
of the forces is the resultant of the other two ; and in the solu-
tion of such triangles, the general formule given above may
be used. For ordinary purposes the ideal triangle alone is suf-
ficient, and in its solution it is convenient and in accord with
usage to ignore the exterior angles a, B, y, and to use the
interior angles A, B, c. The rules may then take the form
shown below. There are four cases.

(@) Given a, b, c, the three sides :
then cosA=(b*+c*—a')/2bc,
cos B=(c*+a*—0%) /2 ca,
cosc=(a*+8*—c")/2ab; check: A+B+C=2R.
These formulee are used if @, &, ¢ be expressed in numbers
8o small that the squares, sums, and quotients are easily com-
puted ; and the angles are then found from their natural co-

sines. If @, b, cbe expressed in large numbers use the formulas
shown below, which are specially adapted to logarithmic work.

tanga=+[(s—a) (s—d) (s—c)/s]/(s—a),
tanyB=+/[(8—a) (s—0) (s—c)/8]/(s—d),
tan yc=+[(s—a) (s—0) (s—c)/s]/(s—¢).
For tanja=#[(s—0) (s—c)/s(s—a)]
= V[(s-2) (s—¢) (s—a)/s(s —a)']
=¥ [(s—a)(s-?) (s—0)/3]/(s—a),

and so for tans, tanjc.
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The special advantage of these formule lies in this, that the
radical part is the same for each of the three half angles.

E.g. Leta, b, cbe3, 5, 7; then, using the upper formuls, the
work may take this form :
cosA=(25+49-9)/70= 65/70= .9286, and A= 21°47
cosB=(49+9—-25)/42= 33/42= .7857, and B= 38°13’
cosCc=(9+25—49)/30= —15/30= —.5000, and ¢=120°
check: A+B+c=180° 180°

So, let a, b, cbe 357, 578, 735 ; then, using the lower formuls,
the work may take this form :

357 8=832.5 log, 2.9204—
573 s—a=475.5 2.6772+
735 8—b=259.5 2.4141+
2)1665 s—c= 91.5° 1.9890 +
832.5 check : 1665. 2)4.1599
2.0800
2.0800 2.0800 2.0800
—2.6772 —2.4141 —1.9890
log-tan $A =9.4028 log-tan §8=9.6659 log-tan $¢=0.0910
Ja=14°11 §B=24°514' o= 50°58'
A=28°22' B=49°43' ©=101°56'

check : A+B+c=180° nearly.
QUESTIONS,

1. Show by the formul® that a triangle is possible only when
each side is less than the sum of the other two sides.

What sign must be given to the radical in an ideal triangle?

2. Solve the triangle, given @, 127 m.; 8, 64.9 m.; ¢,152.16 m.

[55°19.4', 24°51.1', 99°49.2"

3. Solve the triangle, given a, 659.7 ; b, 318.2 ; ¢, 527.6.

4. Solve the triangle, given @, 625 ; 5, 615; ¢, 11.

Before solving show which of the angles A, B, ¢ are large,
which small, and which smallest.

Can an exact solution be made ?
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(8) Given A, B, ¢, two angles and a sids:
then ©¢=180°—(A+B), a=sina-.¢/sinc, b=sinB-c/sinc.
check : sin c=+/[(s—a) (8—10)/ab].
E.g.let A, B, ¢ be 50°, 75°, 120 yards; then the work may take

this form :
©c=180°—125°="55°
log 120 =2.0792 2.1658 2.1658
log-sin 55°=9.9134 log-sin 50°=9.8843 log-sin 75°=9.9849
2.1658 log a=2.0501 log 5=2.1507

a=112.2 yards. 5=141.5 yards.
check: ¢=120
a=112.2 log, 2.0501—

"5=141.5 2.1507 -
2)373.7
8=186.85
s—a= 74.65 1.8730 +
8—b= 45.35 1.6566 +
8—c= 66.85  2)9.3288 $c=27°30
373.7 9.6644  log-sin $¢=9.6644
QUESTIONS.

1. In examples under this case, is there always a solution ?
Is there ever more than one solution ? What limitations are
there on the values of the two given angles A, B?

2. Solve the triangle, given A, 34°; B, 95°; ¢, 13.89 ft.

[61°, 9.995, 17.805.

3. Solve the triangle, given B, 58°30'; ¢,120°13'; a, 5387 yds.

Can an exact solution be made with the angl'es B, C 80 large,
and A s6 small ?

4. Write out the formuls for the solution and the check
when B, ¢, a are given.

So, when ¢, A, & are given.

So, when A, B, @ are given.

5. Why may not more than three parts be given ?

E.g. Why may not the data be 4, 50°; B, 75°; @, 20; b, 30 ?
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(¢) Given a, b, c, two sides and their angle :
then J(A+3B)=90°—-4c, tan}(a—B)=cotc.(a—b)/(a+d),
3(a+B)+3(a—B)=4, }(a+B)-§(a-3)=B,
¢=sinC-a/sin A.
check : (b+c)/a=cos§(B—cC)/sin §A.
E.g. let a, b, c be 635, 361, 61°17'; then the work may take
this form :

FORMULZXE. NUMBERS. LOGARITHMS,
cot 3¢ 30° 38’ 0.2275+
a—b R4 2.4378 +
ta+bd 996 2.9983 —
=tan §(A—B) 24° 54" 9.6670
90°—}c
=4(a+B) 59° 214’
A (sought) 84° 16’
B (sought) 34°27
a 635 2.8028 +
«sinc 61°17' 9.9430 +
:8in A 84° 16’ 9.9978 —
=c (sought) 559.75 2.7480
check: b+c 920.75 2.9642 +
i 635 2.8028 —
0.1614
=cos }(C—B) 13° 25’ 9.9880 +
:sin A 42°8' 9.8266 —
0.1614
QUESTIONS.

1. In examples under this case, is there always a solution ?
Is there ever more than one solution ? Are any limitations to
be put upon the lengths of the sides or the magnitude of their
angle ? Between what limits do }(A+B), 3(a—B) lie?

2. Solve the triangle, given «,25.3; &, 136; c,98°15"

[10°10°, 71°35, 141.86.
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(d) Given b, c, B, two sides and an angle opposite one of them:
then sinc=c¢-sinB/b, A=180°—(B+cC), a=sina-b/sinB.
check : (a+0)/c=cos (A —B)/sin }c.

The angle ¢, found from the equation sinc=c¢-sin B/, may
in general have two supplementary values [sinsup a=sin a.
and two triangles are then possible.

But there are some limitations :

1. If B, b, ¢ be so related that c¢-sinB> 5, then sinc>1,
which is impossible, and there is no triangle.

2. If c-sinB=5, then sinc=1, c isa right angle, and
there is one, a right triangle.

3. If either value of the angle c makes B>c when b%¢,
or B<C when &<«c¢, that value must be rejected.

In particular : if B be acute, no triangle is possxble if 6< p,
the perpendicular from A to the side @ ; one right triangle if
b=p; two triangles if p <b<c¢; one, an isosceles triangle, if
b=c; one triangle if > e.

So, if B be right or obtuse, a triangle is possible only when
5> ¢, and then but one.

QUESTIONS,

1. Draw figures to show the several cases outlined above,
and show how the geometric constructions interpret the facts
as shown by the formule, for the several cases.

Solve these triangles, given :
2. 5,18; ¢, 20; B,55°24" )
[66°9, 58927, 18.64, or 113°51, 10°45', 4.08.
a,10; 5,20; A,30°. 4.5,16; ¢,20; B,86°40".
¢, 20; a,20; C,47°9. 6. a,24; 5,20; a,37°36.
a,24; 5,203 4, 120° [46°12', 13°48', 6.61.
. a,20; 5,20; A,135° 9.a,16; 5,20; A,150°.

10. Let o, P be two points 10 feet apart about 0 describe a
circle with radius 4 feet ; through p draw aline making an angle
of 20° with the line Po: at what distance from P does this line
cut the circle ?

&

o™
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QUESTIONS FOR REVIEW,
Solve these triangles, given :
1. a,40; 5,50 ; ¢, 60. . a,4;0,5;¢,6.
a, 411; b, 522; ¢, 633. 4. A,60°; B, 60°; ¢, 10.
a, 24; B,45°; ¢, 24°. 6. A,31°26'; b,17.1; c,47°18".
a,14; b,14; ¢,60°. 8. a,38.9; B, 9°18'; ¢, 119.11.
A, 117°23; 5, 65 ¢, 11.14.  10. a,36; 5,40 ; 4, 51° 16",

© 2 oo

11. If the three sides a, 3, ¢ of a triangle be given, find the
length of the perpendiculars from the vertices upon the oppo-
site sides ; of the lines connecting the vertices with the mid-
points of the opposite sides ; of the segments of the bisectors
of the angles, cut off by the opposite sides.

12. Inex. 10 of page 72, let the distance op be @, the radius of
the circle 4, and the angle PoQ, ¢ : how many solutions are pos-
gible when a>4? whena=05? whena<b?

Show how the angle c is limited in each of these cases.

18. Discuss ex. 12 if ¢ be negative. So, a or b be negative.

14. Thesides of a triangle are 3, 4, 4/38: show, without solv-
ing, that the largest angle is greater than 120°.

15. Ifa, b, c be in arithmetic progression, 3 tan4a-tanfc=1.
16. If c=2B, then ¢*=5 (e +2d).

17. Show by trigonometry that if an angle of a triangle be
bisected, the segments of the opposite side are proportional to
the other two sides.

18. If a cos A=5 cos B, the triangle is either right-angled or
isosceles.

19. If » be any point in.an equilateral triangle aBc, then
cos (BPC — 60°) = (PB*+ PC*—PA’)/2PB- PC.

20. Show how to solve a triangle from the three altitudes
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§ 4. SINES AND TANGENTS OF -SMALL ANGLES.

If an angle be very small, its sine and tangent are also very
small ; but their logarithms are negative and very large, and
they change rapidly and at rapidly varying rates. Such loga-
rithms, therefore, are not convenient for use where interpola-
tion is necessary, and in their stead the logarithms given below
may be used ; they are based on the following considerations :

An angle whose bounding arc is just as long as a radius is
a radian ; it is equal to 57° 17' 44.8", v.e. to 206264.8", and
the number of seconds in an angle is 206264.8 times the
number of radians. The index for radians is ".

For a small angle the number of radians in the bounding
arc is a very small fraction, and it is a very little larger than
the sine of the angle and a very little smaller than its tangent :
it follows that, if a small angle be expressed in radians, the
ratio sinA"/A is a very little smaller, and the ratio tana™/a
is a very little larger, than unity. These ratios approach unity
closer and closer as the angle grows smaller.

1f the angle be expressed in seconds, the ratio sinA”/A is
a very little smaller than the reciprocal of 206264.8, and the
ratio tanA”/A isa very little larger than this reciprocal. These
ratios change very slowly, and hence interpolation is always
possible ; the table below gives their logarithms as far as 5°.

Angle. log(sin A’’/a). Angle. log (tan A’’/A). Angle. log(tana’’/a).
0° -1°4" 4.6856 0° -1°18' 4.6856 3°37-3°54' 4.6862
1°5' -2°28' 4.6855  1°19'-1°59' 4.6857  3°55'-4°11' 4.6868
2024'-3°11" 4.6854 2° —2°20° 4.6858  4°12'4°27 4.6864
8°12'-3°50" 4.6858  2°30'-2°54' 4.6859  4°28'4°41' 4.6865
8°51'4°23" 4.6852 2°55'-8° 16" 4.6860 4°42'-4°55' 4.6866
4°24'4°52 4.6851 8°17'-8°36" 4.6861  4°55'-5°00" 4.6867

The cosine and cotangent of an angle near 90° are the sine
and tangent of the complementary small angle. The logarithm
of the cotangent of a small angle is found by subtracting the
modified logarithm of the tangent of the angle from 10 ; that
of the tangent of an angle near 90°, by subtracting the modi-
fied logarithm of the tangent of the complementary small
angle from 10.
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TO TAKE OUT THE SINE OR TANGENT OF A SMALL ANGLE.

Take out the logarithm that corresponds to the number of
degrees and minutes ; and add the logarithm of the whole num-
ber of seconds in the angle.

Let A be the number of seconds in an angle ;
then-.rsin A" =(sin A"/A)- 4,
- log-sin A" =log (sin A"/A)+log A ;
and .- tan A" =(tan A"/A)- A,
.. log-tan A" =log (tan A" /A) +log A.
E.g. log-sin 10’ 30" =log (sin 630"/630) + log 630
=4.6856 +2.7993 ="7.4849.

So, log-tan 3° 13’ 40" =log (tan 11620"/11620) +log 11620
=4.6860+4.0652 =8.7512.

The angle is found by a reverse process.

E.g. to take out log-sin-'8.4143:

From the table of sines and tangents, page xi, it appears
that the angle sought lies just below 1° 30’, and by the formula

log A=log-sin A" —log (8in A"/4) ;
and . 8.4143 — 4.6855 =3.7288,
.. the angle is 5355"'; 7.e. 1° 29' 15",
So, to take out log-sin-' 8.8062 :
The angle sought lies near 3° 40/,
and . 8.8062 —4.6853 =4.1210,
.*. the angle is 13212"'; 7.e.3°40'12".

QUESTIONS.
1. Find log-sin 22', 43, 1°11/, 1°27, 2°24'36".
2. Find log-tan2?2/, 43, 1°11, 1°27, 2°24'36".
3. Find log-sin—' 7.3146, 8.2719, 8.4185, 8.8927.
4. Find log-tan-'7.3146, 8.2719, 8.4185, 8.8927.
Solve these triangles, given :
5. a, 327 ; b, 328 ; ¢, 654. 6. a, 3279 ; &, 3280 ; ¢, 1°
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§ 5. DIRECTED AREAS.

If an elastic cord be stretched from a point 0 to a point A,
and if while one end of this cord is fixed at o, the other end
trace a line AB, straight, broken, or curved, the cord, now a
radius vector of varying length, sweeps over the figure 0B,
and may be said to generate the area 0AB. It is convenient
to call the area of the figure 0AB positive if the radius vector
0A be positive and swing about 0 counter-clockwise, and neg- -
ative if it swing clockwise ; and this convention conforms to
the conventions as to directed lines and angles already in use.

0 . A O A
If after generating the area 0AB the cord swing back from
0B to 0A, and its end retrace the same line from B to A, then
the area 0AB may be thought of as taken up and cancelled,
and the sum of the areas 0AB, 0BA is naught.
So, if ¢ be any point on the line AB, then :
area OAB+area OBC =area 0AC,
and area 0OAB-+area OBC+area0CA=0.

THEOR. 3. If ABC be an ideal triangle whose sides are a, b, c,
and exterior angles a, B, v, and if K be the area of this triangle,

B

Vg
then XK=4ab-siny=4%ab-sinc,

=}at-sin B sin y/sin a=30*-tn B sinC/sin A,

=y/s(s—a)(s—b) (s—c).
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For draw NA normal to Bo,
then'" K=4 BC-NA,
and NA=CAsiny,
S.K=}BC-CcAsiny,
i.e. K=4absiny=}absinc. Q.E.D.
So, *.' b =asinf/sina=asinB/sina,
. K=4a*sinf siny/sina=Ja*sinB sinc/sinA. Q.E.D.
So, *.*sin y=2sin }y cos §y
=248 (s—a) (s—b) (s—c)/abd,
S K=Ws(8—a)(s—d)(s—c). Q.E.D.
Cogr. 1. If ABc be an ideal triangle, 0 any point, and K the
area of ABC, then :
ABC=0AB+0BC+0CA,
K=4[0A OB $i7% AOB+OB- 0C $i% BOC+ 0C- OA 817 COA].

(a) o within ABc.

¥B oY 7B

For the three geometric triangles 0AB, 0BC, 0cA are together
equal to ABC, as in the first figure, and their areas are
all positive.

(8) owithout aBc.

For “.* when two of the triangles 0AB, 0Bc, ocA are added and
the third is taken away, the triangle ABc remains as
in the second figure,

or when from one of them the other two are taken away,
it remains ag in the third figure,
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and while the areas of the two are positive or negative, the
third is negative or positive,
.. the algebraic sum of the areas of these three triangles
is that of ABc, in both cases;
.. K=}[0A- OB sin A0B+0B- 00 8in BOC+0C-0A 8in COA].

7B ov 7B o\ 7B o=

CoRr. 2. If ABC- - - L be any polygon, 0 any point in the plane
of the polygon, and K the area, then :

E=%(0A-0B 8i7 AOB+OB-0C 87 BOC + « + «
+OL:0A $in LOA).

In the three theorems that follow, it is assumed that every
motion of a point is the limit of some motion made up of small
translations along successive lines, and every motion of a line
is the limit of some motion made up of small rotations about
successive points.

Either motion is that of a point and a line through it, such
that the point always slides along the line, while the line always
swings about the point.

E.g. if a line roll round a circle, without sliding upon it, the
line always swings about the point of contact, while the
point of contact always slides along the tangent line.

The area swept over by a segment of a straight line is the alge-
braic sum of the areas of all the infinitesimal quadrilaterals and
triangles passed over, from instant to instant, by the segment.
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THEOR. 4. If PQR - - - TP be any closed figure traced by the
end of a radius vector, drawn from o, and varying in length
if need be, the area of this figure is the area swept over by the
radius vector, and s positive when the bounding line is traced
in the positive direction of revolution, and negative when traced
in the negative direction. '

(a) No reversals of motion of the vector, as in the first figure,
or only one reversal, as in the second figure :

For -.: there are no intermediate reversals, [byp.
.. the figure enclosed by the boundary is swept over once,
and but once, by the vector, when it swings in the
direction in which the path is traced ;
and °. all other figures swept over by the vector in one direc-
. tion are also swept over in the other direction, and
cancelled,
.. the algebraic sum of the areas of all the figures swept
over is the area of the figure enclosed by the boundary,
and this area is positive when the path is traced in the posi-
tive direction of rotation, and negative when it is
traced in the negative direction. Q.E.D.

(8) Intermediate reversals of motion, as in the third figure :

For °.: intermediate reversals occur in consecutive pairs in op-
posite directions,

.~ if a point within the enclosure be swept over more than
once, it is swept over an odd number of times so as
to give an excess of just one passage in the forward

. direction ;
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and .’ every point without the enclosure is swept over, if at all,
the same number of times in each direction, so that
any outside area that may be generated is cancelled,

.. the algebraic sum of the areas of all the figures swept
over is the area sought. " Q.E.D.

.Notke 1. If the boundary cross itself, the figure is thus di-
vided into two or more parts : thearea of each part may be con-
sidered separately, and the area of the whole is the algebraic
sum of the areas of the several parts.

E.g. the area of the crossed quadrilateral ABcD is the algebraic
sum of the areas of the positive triangle AED and the
negative triangle EBC, and has the sign of the larger.

Nore 2. In adding two areas any common boundary trav-
ersed in opposite directions may be erased.

Cor. If a segment AB of a vector OB swing about 0 as centre
into the position A'B', the area of the figure swept over by this
segment 1s the area of the figure ABB'A', bounded by the initial
and terminal positions of the segment and the paths of its ends.

B

’

A X
For *.» AB=0B—0A4,

.. the area K of the figure swept over by the segment AB

is the area of the figure swept over by vector 0B less

the area of the figure swept over by vector 04,
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.. KE=0BB'—0AA'=0BB'+0A'A=ABB'A’A. Q.E.D. [th.4.

THEOR. 5. If two points A, B move (forward or backward in
any way) along any paths AA', BB' to A', B, then the area swept
over by the straight line AB (varying in length if need be) s tke
area of the figure ABB'A’,

For let the motion of the generator AB be made up of infini-
tesimal rotations about successive instantaneous centres
Cpy Cgy Cg + = ¢ 3

then'.: AB sweeps over figures ABB,A,, A;B;B,A,- -, [th. 4, cor.
and "’ all the intermediate positions A,B,, A;By--- of AB are
common boundaries of these figures traced in oppo-

site directions,
.. the sum of all the areas swept over is the area of the
figure bounded by the path ABB'A’A. [th. 4, nt. 2.

CoRr. 1. The area swept over by any straight line AB 18 the
sum of the excess of the area of the figure subtended (from any
origin) by the path of the terminal point B over that subtended
by the path of the initial point A and the excess of the area of the
triangle subtended by the initial line AB over that subtended by
the terminal line A'B';

v.6. ABB'A'A=(0BB'—0AA')+(0AB—04A'B'),
6
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CoRr. 2. If the generator AB return to its initial position, the
area swept over is the excess of the area of the figure bounded by
the path of the terminal point B over that of the figure bounded
by the path of the initial point A.

A

Cogr. 3. If the generator AB return to its initial position,
and the initial point A trace out the same path, to and fro,
then the area swept over is the area of the figure bounded by
the path of the terminal point B.

THEOR. 6. If a wheel be affized to its axis at the mid-point,
and if this wheel roll and slide in any way upon a plane while
- 113 axis remains parallel to the plane, the area swept over by
the azis is the product of its length tnto the distance rolled by
the wheel.

For, let AB be the axis and M the mid-point ;

let the axis turn about an instantaneous centre o, throngh an
infinitesimal angle 6, and at the same time let the axis
glide along its line an infinitesimal distance, to A'8';

then: 0A=04', 0B=0B', oM=o0M', sinf=6,
.. area ABB'A'=0BB'—0AA'=§(0B*—04Y)-0
=4(0B—0A) (0B+04)-f=4B-0M-0
=AB-the distance rolled by the wheel at M,
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.". the area swept over by any number of such successive
rotations is the product of AB by the distance rolled
by the wheel at M. Q.E.D.

Cogr. 1. If the wheel be affized to its axis at any other point,
C, and the azis turn through an angle, a, between. its first and
last positions, the area swept over s

AB-the distance rolled by the wheel at c+ AB-cM- a.

For °.: in the infinitesimal rotation above,
area AB-OM-f=AB-(0c+cM). 0
" = AB- the distance rolled by the wheelat c+ AB-oM- 6,
.. the sum of all such rotations is AB-the distance rolled
by the wheel at c+AB-cM-a. [a=0+60+---.

Cor. 2. If the azis return to its first position without making
a complete revolution, the area swept over 18 AB-the distance
rolled by the wheel affized at any point c. [a=0.

QUESTIONS.

1. If A, B, ¢ be fixed points on a line that turns in a plane
through an angle a,

then BcC area AB—AB area BC=4AB-BC-CA-a.
2. If the line in ex. 1 return to its first position :
(¢)  without making a complete revolution,
area B=(AB area C+ BC area A):AC;
(4) after making a complete revolution,
areaB+ 7+ AB-BC=(AB area C+ BC areaA):Ac,

3. If the chord Ac, in ex. 1, slide round an oval, the area
between the oval and the path of B is 7- AB-BC.

4. Find the area of the curve traced by a point on the con-
necting rod of a piston and crank in one revolution ; also the
‘distance a small wheel attached at the same point would roll
if a plane surface pressed against it.
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AMSLER’S PLANIMETER.

Let the axis AB [fig. theor. 6] be pivoted at A toan arm oa of
fixed length that turns about a fixed centre o, so that
A traces a fixed circle while B traces any path whatever ;
let the wheei be affixed to AB at any point c, but let it be
impossible for AB to sweep past 0A so that AB, 0A can
take but one position for one position of B, and, if A
encircle 0, AB also encircles 0 in the same direction :
1. If A return to its first position without encircling o,
then".* A traces out the same path, to and fro,
.. the area encircled by B is the area swept over by AB,
[theor. 5, cor. 3.
t.e.  the area is the product of the number of turns of the
wheel into the constant area 2zr- AB, [theor. 6,cor. 2.

wherein r is the radius of the wheel.

2. If A encircle 0 counter-clockwise,
then the area encircled by B is the area swept over by AB+the
area of the circle 0a, [theor. 5, cor. 2.
1.e.  the area encircled by B is 277 AB-the number of turns
of the wheel (positive or negative) + AB-cM- a4 7 04%,
wherein a is 27. [theor. 6, cor. 1.
The constants of the planimeter 2mr-AB, m(2AB-CM+0A?)
can be found once for all. The first is the area due to one turn
of the wheel ; the second is that due to the swinging of the
arms OA, AB about o.
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§ 6. INSCRIBED, ESCRIBED, AND CIRCUMSCRIBED CIRCLES.

ProB. 2. To FIND THE RADII OF THE CIRCLES INSCRIBED
IN, ESCRIBED, AND CIRCUMSCRIBED ABOUT, ANY TRIANGLE.

For the radius of the inscribed circle, divide the area by half the
perimeter.
For the radius of an escribed circle, divide the area by half the
" perimeter less the side beyond which the circle lies.
For the radius of the circumscribed circle, divide half of either
side by the sine of the opposite angle.

For, let ABc be any triangle, and let r=radius of inscribed

circle, 7', 7", """ =radii of escribed circles whose centres
are 0, 0", 0", and rR=radius of circumscribed circle ;

"

D"

then'.' K=4r (a+b+c)=rs, [geom.
ST =K/s. ' Q.E.D.

So, "K=4r(—a+b+c)=r(s—a), [geom.
“1"=K/(s—a) ; and so for »", r'". Q.E.D.

Checks : 1/7': 1/r’+ 1/7-" + 1/7.'”, Ki=pep oo™,
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About ABc draw a circle and draw ca’, a diameter ; join A'B ;
~ /“\\

e

then'.- A=A, and angle ABc is a right angle, [geom.,
and cA'=a/sin A'= a/sin 4,
S BR=4a/sina ..., Q.E.D.

NoTE. a/sin A=5/sin B=c¢/sin c=2R.

QUESTIONS.

Find the radii of the inscribed, escribed, and circumscribed
circles, and check the work, given :

a, 12.7; b, 22.8; ¢, 51.5.
A, 64°19'; B, 100°2'; ¢, 51.25.
a,136; 5, 95.2; c,11°37.
In a right triangle, 2R +r=s.
If =2r, the triangle is equilateral.
In the ambiguous case the two values of R are equal.

7. The distances from the centre of the inscribed circle to
the centres of the three escribed circles are equal to

4R8in}A --., and to @sec A - - -. :

8. The square of the distance between the centres of the

inscribed and circumscribed circles is R*—2R7.

SR e

Prove the equations:
9. r =(s—a)tan §A.
10. r =s tan A tan B tan 3c.
ffprt 1~~~ 10), r'=a/(tan B+ tan §c).
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Prove the equations :

12. r=abc/4K.

13. R=s/(sin A+sin B+sinc).

14. ' +7"+r" —r=4R; rr'/r'r’" =tan* A.

15. K=4R7 cos§A cos{B cos}c. ’

16. R+7=R (cos A+ C08B+C08C).

17. 4R sin A sin B sin C=a cos A+ & cos B+c¢ cosC.

18. In the ﬁgure on page 85 co"’
A0’ to 0"'0", " to 0"'0’.

The point o, the co-point of these three perpendlculars, is the
orthocentre of the triangle 0’00

is perpendicular to 0’0",

The triangle ABc, whose sides join the feet of the perpendic-
ulars two and two, is the pedal ¢riangle of 0'0"0™".

19. The circle circumscribed about ABC passes through the
mid-points of the triangle 0'0”0", and through the mid-points
of the segments 00’, 00", 00"

This circle is the nine-point circle of the triangle o'o”0".
20. The nine-point circle of a triangle circumscribes its

" pedal triangle, passes through the mid-point of each side, and
bisects the lines joining the vertices to the orthocentre.

21. If a, b, ¢ be the sides of a triangle, and p be the radius of
the circle inscribed in a triangle whose sides are b+¢, c+a,
a+b, then pP*=2Rr.

22. If @, b, c be the sides of a triangle, and m, n, p be the
altitudes, then mnp=(a+5&+¢)*r*/abe.

23. If u, v, wbe the distances between the excentres of a
triangle, then www sin A sin B sin c=87'r"7".

24. Find the radii of the circles that touch two sides of a
triangle and the inscribed circle.

So, of those that touch the circumscribed circle.

25. Find the relation which exists between the angles of a
triangle whose orthocentre lies on the inscribed circle.
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IV. DERIVATIVES, SERIES, AND TABLES.

§1. CIRCULAR MEASURE OF ANGLES.

In the applications of trigonometry to numerical problems,
e.g. the solution of triangles, the most convenient unit of an-
gular measure is the right angle, or the degree, the ninetieth
" part of a right angle ; but in certain other problems, e.g. the
computation of trigonometric ratios and their logarithms, that
angle which lies at the centre of a circle, and whose bounding
arc is just as long as the radius of the circle, is a better unit.
This unit angle is called a radian, and its magnitude is inde-
pendent of the length of the radius. [geom.

Radians may be indicated by the sign 7, just as degrees, min-
utes, and seconds are indicated by the signs °,’, ” ; and since
the ratio of the half circumference of a circle to its radius is
m, [3.141592- - -] and angles at the centre are proportional to
their arcs, two right angles are equal to 7 radians.

The primary equation expressing the relation between de-
grees and radians is 7#"=180°: from this it follows that

T =90°, }n"=45°, Ia"=30°, ...,
1"=180°/7 = 57° 17" 44.8", »
1°=#"/180=.0174533", 1'=.0002909", - - -,
and the measure. of other angles is expressed by the ratio of
the bounding arc to the radius.
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QUESTIONS.

1. Prove that the number of radians in an angle is ex-
pressed by the ratio of the arc subtending it to the radius of
the circle, 7.e. by the number of radii in the arc.

2. Express in degree-measure the angles :
7, ¥m, ¥m, §m, 3.1416", .7854", 17, 1.57, -2, (w+1)".
3. Express in radius-measure the angles :
14°, 15°, 24°, 120°, 137°15', ~4800°, 13', 24".
4. If the radius be an inch, find the length of the arcs :
14°, 15°, 120°, 57° 17" 44.8", 1°, =, =, 27, w+1".
So, if the radius be five inches.
5. How many radii in an arc of : 20°, 180°, 3"°?

6. If the radius be 10 inches, find the number of radians
subtended by an arc of : 13 inches, » inches, 10°, 5'13", three
quadrants.

7. The angle 3.42" is subtended by an arc of 5.71 inches:
find the radius; the arcs opposite §77, 17, 5°; the angles in
radians and in degrees opposite a one-inch are, a two-radius
arc, five quadrants.

8. If the circumference of a circle-be 30 inches, find the
arcs opposite =", 30°, 3".

9. How many radians and how many degrees are subtended
by : 2} radius arcs, 7 radius arcs, 3§ quadrants ?

10. How many radians in 17°13'15” ? in 10°?

11. An angle of three radians at the centre of a sphere sub-
tends a two-foot arc of a great circle : find the radius.

12. The apparent diameter of the sun, as seen from the
earth, is half a degree; a planet crosses the sun’s disk in a
straight line at a distance from its centre equal to three-tenths
of the sun’s diameter : show that the angle subtended at the
earth by the part of the planet’s path projected on the sun is
ar/450.
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§ 2. DERIVATIVES OF TRIGONOMETRIC RATIOS.
THEOR. 1. If 0 be the circular measure of a positive acute

angle, then sin0<8<tan 0.

For, let xoP be any positive acute angle ; with o as centre, and
any radius oX, describe a circle cutting op in P

through P, X draw normals to oX, cutting oX in A and orinT;

T
P
0 XX
then'." AP < XP < XT, [geom.
and AP/oX=sinf, XP/ox=6, XT/ox=tan,
~.sinf < 6 < tané. Q.E.D.

Cor. 1. If 0 approach zero, the ratios 6/sin@, 6/tan
approach unity.

For " sin § < 6 < tanf, _ [above.
. 1<6/sin 6 < sec ¥, [div. by siné.
and cosf<f/tanf<1; [mult. by cosé.

and *cosf =1, and secA =1, whenf =0,
. 0/8in0 =1, and 6/tanf =1, whenf =0.

For definition of limit, derivative, etc., and for proof of the
necessary properties of limits and derivatives, see any good
work on the differential calculus.

Some of the fundamental properties of derivatives are, for
convenience of reference, set down here as lemmas without
proof ; they are given in two forms :

If v, v be functions of any variable x, then :
LeM. 1. D;(U+V)=D;U+D,V,
: ’ S (U+V)=0U+6V.
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LeEM. 2. D, (U-V)=V:.D,U+U-D,V,

6(U-v)=V.-0U+U-0OV.
LEwM. 3. D, (U/V)=(V:D,U—U:D,V)/V?,

6 (v/v)=(V:-0Uu—~u-0Vv)/v.
LEM. 4. D,U*=2nU"'.D,U, dut=nutt.d0U. ]
LEM. 5. D,log,U=D,C/U, 06 log,U=0TU/T.
LEewM. 6. If U be a function of Vv, and v a function of z, then:

D,U=D,U-D,V.
wherein », = z-derivative of, & = a very small increment of,

and the sign =, read approaches, means that the difference of
the two members is infinitesimal as to either of them..

DERIVATIVES OF THE RATIOS.

THEOR. 2. If 0 be the circular measure of any plane angle,
then :
Dy 8in 0=cos 6, Dyesc 0= —cot 0 csc b,

Dycos 0= —sin 6, Dysec O=tan O sec,
pgtanbO=sec*,  Dgcot 0= —csc* 6.
For, let ¢ be an infinitesimal angle, the increment of 6 ;
then"." sin (0 + ') —sin =2 cos (0 +36') sin 16,
.. [8in (6+6') —sin 0] /6' =cos (0 + 46') - sin §6/46'.
But -, #' is the increment of 0, [hyp.
and sin(0+6')—sin @ is the consequent increment of sin 6,
.".lim (incsin 6/inc ), =Dpgsin §,=cos f.  Q.E.D. [th. 1.
So, .- cos (0 +8')—cos = —2sin (0+30') sin 36,
. [cos (8 +6') —cos 0]/6'= —sin (0 +36')-sin 6 /30,
.. lim (inc cos 8/inc f),=pgcos §, = —sin 6. Q.E.D. [th. 1. .
So, Dpgtan #, =Dy (sin 6/cos b),
=(cos 0 Dy sin §—sin § Dy cos ) /cos* &
=(cos* f +sin* 6) /cos® 6=sect 8.

So, for Dycsc 8, =Dg (1/8in §), for pgsec 8, for Dy cot b.
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GEOMETRIC PROOF. ‘
Let 0-xP be any circle, and Q a point on this circle near p;
bisect arc PQ at R, and join 0Xx, oP, 0Q, OR;
draw AP, BQ normal to 0X ;
join ®, Q, and through P draw a parallel to 0X meeting BQin D ;
let = £xo0p, ¢'= £LP0OQ, (0+30')= ZXOR, r=radius of circle ;

Q
R
P
D
0 B A X
then'. sin §=ar/r, sin(6+6)=8Bq/r, O =arcprq/r,
and ZDQP= ZXOR, [geom.

. [sin (6+ 6') —sin 6] /60'=Dq/arc Pq
=(pQ/chord PQ) - (chord rQ/arc PQ)
=cos (0 +46') - (chord pq/arc pqQ),
.. lim (incgin /inc #), =Dg 8in 6, = cos f; Q.E.D. [th.1.
and so for Dg cos , Dgtand - - -,

DERIVATIVES OF ANTIFUNCTIONS.
THEOR. 3. D, sin"'z=1/4/(1—2%), .
Dy cos™'z=—1/4/(1-2%,
Dytan~'z=1/(142%),
Dy cot7'z=—=1/(1+2%),
D,y sec”'z=1/z4/ (2*—1),
D, csc™'z= —1/z4/ (x*—1).
For let 0 = sin™'z;
then'." sin 6 = 2,
. .Dy8in 6, =cos f-p,0, =1,
S.D0=1/cosf =1/4/(1-2%); Q.E.D.
and so for the rest.



2,3,§2.] DERIVATIVES OF TRIGONOMETRIC RATIOS, 93

NoTe. When 2z stands for sinf or cos §, 2 may have any
value positive or negative not larger than unity; when z
stands for tan 6 or cot ¢, 2 may have any value whatever ; and
when 2 stands for sec 6 or csc §, x may have any value not
smaller than unity: for if, in the formule above, 2 exceeds
the bounds named, the function is imaginary.

_ QUESTIONS.
1. If O be any plane angle and 6’ be the increment of 6, then 3
inc? sin = — (2 sin §¢')* sin (0 +6'),
inc? cos = — (2 sin 46')* cos (¢ + ¢'),
inc* sin = (2sin $0')* sin (6+26'),
inc*cos = (Rsin §6')* cos (§+26'),
wherein inc*sin #=the increment of the increment of sin 6,
t.e. [sin(0+20)—sin(6+6')] —[sin (0+6')—sin b],
or sin (6 +26') —2sin (0+6') +sin 6 ;
and inc*sin #=incincincinc sin 8,
t.e. 8in(0+46')—4sin (0+36)+6sin (0+26')
—4sin (0+6')+sin 6.
2. If da, 6b; d¢c, 5A, 6B be any simultaneous small changes

in the valuesof a, b, ¢, A, B, that are consistent with the known
relations of the parts of a right triangle

[A+B=90° a'+d'=¢, a=csina, b=ccosa],
then J0B= —0J4A, dc=a/c-6a+b/c-Sb=sin A-Sa+cosA-db,

da=sinA-0c+ccosA-0A, Jb=cosA-Oc—csinA-Ja,
and [eliminate d¢ from the last two equations]

0A=cos A/c-0a—sin A/c.- b= (bda—adbd)/(a*+ 0.

3. If, in a right triangle, only the values of @, & be given,
and if these have the possible errors *a’, *4'; i.e. if @ may pos-
sibly differ from its assumed value by either +a’ or ~a', and &
by either *&' or -4'; show from ex.?2 that the resulting values
of ¢, A will have the possible errors

+(aa'+88')/c =+ (a'sinAa+5"cosa), [a,d positive.
and = (ad +ba')/c*= +(b'sin A +a’ cosa)/c.
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So, if only &, ¢ be given, with the possible errors *&', *¢,
find the possible errors 6f the other sides and angles.
So, if only &, A be given, or only ¢, A, with the possible errors
=P’ =7 or =/, A,
4. From the known relations of the parts of an oblique tri-
angle [A+B+c=180° asinB=5sinA4,- - -] prove that
(a) 0A+6B+6c=0,
(8) bcosa-6A—acosB-0B—sinB-da+sin A-06=0,
¢ cos B-0B—b cos C-6C —sgin ¢- b +sin B-d¢c =0,
@ co8C-0C—ccosA-0A—sinA-dc+sinc-da=0.
From these equations, by elimination and reduction, derive
(¢) b-6c+ccosa-6B—sinA-Sc+sinc-da=0,
¢*BO+bcosA-0C—sinA-S8b+sinB-8a=0,
with four symmetric equations ; and
(d) bsinc-6A—da+cosc-6b+cosB-dc=0,
with two symmetric equations.
5. Ifinan oblique triangle only @, B, ¢ be given, and if their

possible errors be *2/10000, *10”, *15", find the possible errors
of A [ex. 4, a]; of b [ex. 4, c]; of ¢ [ex. 4, c].

Find the values of these possible errors when ABC is very
_ mnearly equilateral, 5000 feet on each side.

6. Given the values of ¢, a, 4, with the possible errors *c,
*q', =}/, find the possible errors of B, A, ¢ [ex. 4, ¢, d].

7. Given A, @, b, with the possible errors *A’, *a', *¥', find
the possible errors of B [ex. 4, 8]; of c, c.

8. Given A, B, b, with possible errors *A’, *8’, *¥’, find the
possible errors of ¢, a, ¢ : first, when, as in all the above cases,
the computation is assumed to be exact ; second, whenc, a, ¢
have the further possible errors *c”, *a", *¢"” from decimal fig-
ures omitted in the computation.

9. Given a, b, ¢, with possible errors *a’, *b', *¢': find the
possible error of A, with a possible error in computation of *a".
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§ 3. EXPANSION OF TRIGONOMETRIC RATIOS.

In the expansion of trigonometric ratios the following prop-
erties of series are made use of : they are all proved in works
on algebra, and are quoted here for convenient reference.

Lex. 7. If, after a given term, the terms of a series form a
decreasing geometric progression, the series 18 convergent.

Lew. 8. If one series be convergent, and if the terms of
another series be not larger than the corresponding terms of the
first series, the second series is convergent.

LEwx. 9. If, after a given term, the ratio of each term of a
series to the term before it be smaller than some fized number
that is itself smaller than unity, the series is convergent.

CoRr. The series Ay+ A+ A2+ AL + - - - 18 convergent for
all values of = that make the limit of the ratio of the (n+1)®
term to the n' term smaller than unity when n becomes very
great.

LEeM. 10. If in the series Ao+ Ax+ A2* + A2°+ - ¢+, the limit
of the ratio of the (n+1)™term to the n™ term, for any value of
z, be smaller than unity, then, in the derivative series A, + 24,2

+34,28+ - - -, the limit of the (n+1)™ term to the n™ term, for
this value of z, 18 smaller than unity, and this series is con-
_ vergent. )

Lewm. 11. If two series arranged to rising powers of any
same variable be equal for all values of the variable that make
them both convergent, the coefficients of like powers of the vari:
able are equal.

THEOR. 4. If 0 be the circular measure of any plane angle,
then : .
sin0=0—-6F/3!1+6/5!1—-6/11+...,
cos 0=1-6/21+6*/4!—-6°/6 !+ ...
For assume sin =24,4+ 4,0+ A, + A,*+ - - -, wherein the A’s

are unknown but constant, and € has such values as
make the series convergent,
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and find the first two 6-derivatives of both members of the
equation ;

then cosf=4,+24,0+34,60°+---,

and —sinf=2A,+2-3A,0+---,

i.e. 8inf=—24,—2-34,0;

and both of these derivative series are convergent. [lem 9, cor.

Take 0 as one of the values of 6 ;

then'. gin 0=0 and A,+A,0+4,0'+4,0°+---=A4,
. Ap=0.
So, vcos0=1 and A,+24,04+384,0°+.--=A4,,
coA =1
S0, At A0+ AP APt =—24,—2-34,6-3-44,0"—
... for all values of # that make both series conver-
gent,

SA=—24, A =-3-4A, A, =-5.64, .-,
and A,=—2.34,, A,=—4-54,, A,=—6-74,---; [lem.11.
o Aoy Agy Ay, Agy Agyc ot :O,
and A,=1, A,=-1/3!, A,=1/5), A,=-1/7-.-;
Sosinf=60-F/31+-6/5!-6/7!+ ...,
and cosf@=1-6/2!+6/4!—6°/6!+ .- -.
Note. These series are convergent for all finite values of 6.
For the ratios of successive terms, in that for the sine, are
6/(2-3), 6/(4:5), &/(6-7)--+;
and, in that for the cosine,
&/(1-2), 6/(3-4), 6/(5-6),---;
1.e. series of fractions such that the limit of the (» +1)™ term
to the ™ term is smaller than unity whatever be the value of 6.
But they converge rapidly only when 6 is quite small.
Cor. 1. tanf=0+6/3+26°/(3-5)+176/(3*-5-7)
+626°/(3*-5-N+-- -,
cotf=1/0—-6/3—6F/(3*-5)—26¢/(3*-5-7)
—G/(35 )=,
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sec0=1+6"/2 4+ 56/(2*-3) +616°/(2*-3"-5)
+2776°/(27-3* )+ - - -,
cscl=1/6+60/(2-3)+76°/(2*-3!-5)
+3160/(24-3°-5-1) + 1276 /(2'-3%5-T) + - - ..
For the tangent, divide the series for the sine by that for the
cosine ;
for the cotangent, divide the series for the cosine by that for
the sine ;
for the secant, divide unity by the series for the cosine ;
for the cosecant, divide unity by the series for the sine.
NotE. The series for tan 6 and sec 6 are convergent only
when 6 < 7, for tan 6 and sec # are finite and continuous
functions of 6 for all values of 6 smaller than = ; but when
= gm their values are infinite. So, the series for 6 cot 6 and
9 csc 0 are convergent only when 6 < 7.
Cor. 2. log-sin 6=1log 0—6/(2-3)— 6 /(2*-3%-5)
—6°/(3%5-)—-- -,
log-cos = —[6*/2+ 6*/(*-3) + 6°/(3%-5)
+176/(2*-3*-5-)+---].
For .- D log-sin f=cos f/sin #=cot 6=1/6—-6/3

—6/(3*-5)—---, . [lem.
.. log-sin f=log 0 —*/(2-3) — 6*/(2*-8*-5)
—6/(35.7)—--, [lem.

t.e.  log-sin #=the series whose f-derivative is the above
series for cot 6, and which, as #=0, approaches to
log 6 as log-sin @ must do.

So, “." Delog-cos = —sinf/cos = —tanf= —(0+6/3+ - .),

. log-cos 6= —[#/2+ 6*/(2-3) + 6°/(3%-5)
+176%/(2%-8*5-7)+---].
Note. The series for log-sin 6 is convergent for all values
of 6 smaller than = ; that for log-cos 6 for all values smaller

than 7.
7
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GREGORY’S THEOREM.

THEOR. 5. If z be any number smaller than unity, then

tan-‘z=z—32' +§2* — 42"+ §2° — 2 + - - oL

For, assume tan-'z=A,+Az+A 2 +A 2"+ A +A2*+ - - -,

then

and °.

and

So,
then

and take the z-derivative of both members ;
Dytan"'e=A, +2A,2+ 34,2 +4A2*+ 5424+ -+ -

‘Dytan-z=1/(1+2)=1—2"+2*—2*+---, [theor. 3.
SoA A2 +3A0 +4A P+ - =1 -2 2t -2+ - - .,

for all values of 2 that make both series convergent,

SoAy Ay Ay, =0, [lem.11.

A1=1: As=_1/3’ Al=1/5’ A=""1/7'°"

T

take 0 as a value of 2,
tan-'0=A,+A4,0+4,0°+4,0°+..., and A,=0;

stanTlr=z -3+ j2t -4 + 20— - - oL QE.D.

Nore. This series is convergent when z<1; but it con-
verges very slowly when « is near one, and rapidly only when
z is small.

In the computation of the length of an arc, and so of the
circumference of a circle and of 7, either of the equations below
gives a practical working rule :

jr=tan-'1/§y3=[1-1/(3-3)+1/(5-3") —1/(7-3")
+1/(9-34)—1/(11-8%) +1/(13-3%) — - . - ]/4/3.

{z=tan? 1/2 +tan-11/3

=1/2-1/(3-2)+1/(5-2)—-1/(7-2)+ . . -
+1/3-1/(3-3)+1/(5-3°)~1/(7-3")+---.
}r=4tan-'1/5—tan-'1/239,
=4 tan"1/5—ta111"1/70+tan“1/99
=4[1/5-1/(3-5*)+1/(5-5%)—1/(7-5")+-- -]
—[1/70-1/(3-70*) +1/(5-70%)— 1/(7-70%) + - - -]
4+ [1/99—1/(3-99%) +1/(5-99%)—1/(7-99") + - - - ].
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With the last of these equations, the work of computation
may take this form :

5 4. +
2 .8 1 8
25 .032 3 .010 666 667
20 .001 28 5 .000 256
25 .0000512 7 .000007 314
25 .000 002 048 9 .000 000 228
.000000082 11 .000 000 007
70 | 1. 4
70 .014285 714 1 .014 285 714
70 .000 204 082
.000 002 915 3 .000 000 972
99 | 1. '
99 .010101 010 1 .010101 010
99 .000102 030
.000001030 3 .000 000 343
.810358210 | .024960 045
.024 960 045
185398 165
. 4
7=3.1415926 to eight figures.

§4. COMPUTATION OF TRIGONOMETRIC RATIOS.

ProB. 1. TO COMPUTE A TABLE OF SINES AND COSINES.

(a) For angles 0°- - -30°: ’
Replace 6 by 1/, 2/, 3'- - -in the formule of theor. 4.
Eg.. 1'= 7/(180-60) =3.141 592 653 589 793 /10800

=.000290 888 208 666,
.. 8in 1'=.000 290 888 208 666 —.000 290 888 208 666*/3 ! +
.000 290 8882 ;
cos1’'=1—.000 290 88 208666/2 1+ « - +
=.999 999 9577 ;
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s1n ?2'=2 x.000 290 888 208 666
— 2% x.000 290 888 208 666°/3 ! + - - -
=.000581 7764 ;

cos 2'=1—2%x.000 290 888 208 666*/2 1 +- - - -
=.999 999 8308.

Nore 1. The fraction 7/10 800 once raised to the required
powers, first, second, third- - ., and divided by the factorials
11,21 8!..., thereafter only simple multiples of the quo-
tients are used. [A small table of these powers and quotients,
correct to twenty decimal places, is given on page 38 of Jones’
Six-place Tables, and a larger table in Callet’s Tables de Loga-
rithmes.] At first but two terms of the series are needed ; but
later, when @ is larger and the series therefore converges less
rapidly, and at critical points, e. g. the finding of the value
of .485795000 =+, correct to five figures, more terms must be
taken.

E.g. for 30°, 6=}mn=.52360 nearly ;
and sin 30°=.52360—.5236"/6 +.5236°/120—- . -
=.52360—.02392 +.00033 —.00000 + - - -
=.5, the true value, within less than .00005 ;
i.e. by the use of three terms of the series, the sine is found
correct to four decimal places, the same degree of accuracy as
that assumed for the value of 7.

NotEe 2. The method shown above may serve whether indi-
vidual ratios be sought or an entire table ; but if a table, then
the following method may also be used.

Assume sin 1’ a8 differing insensibly from arec 1/,

i.e. that sin1’ =.000 290 8882, _

hence, that cos1’, = 4/1—sin®l’, =.999 999 9577 ;

then in the formule
sin (6+ ¢')=2sin 6 cos #'—sin (6 - §'), [11, th. 11, cr. 2.
cos (6+6')=2 cos 6 cos §'—cos (6—6'),

replace f by 1/, 2, 8’ ... in turn, and ¢ by 1’
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Eg. sin2=2sinl" cosl' —sin0’
=2 x.000 290 8882 x.999 999 9577 —0
=.000581 7764 x (1 —.000 000 0423)
=.000 581 7764 ;
and sin3'=2sin? cosl'—sinl’
=2x.000581 7764 x (1 —.000 000 0423)
—.000 290 8882
=.000 872 6646.
So, cosR' =2cosl’ cosl’ —cos0’
=2x.999 9999577 x (1—.000 000 0423) —1
=.999 999 8308 ;
and cos3'=2cos?' cosl —cosl’
=2 x.999 999 8308 x (1 —.000 000 0423)
—.999999 9577
=.999 999 6193.
(6) For angles 30°- - -45° :
Replace 6 by 1', 2/, 3'- - - in the formule -
sin (30° + ') =cos #' —sin (30°— '), [ad.th.,sin30°=4%,
c08(30°+ ') =cos (30°—6') —sin 0.
E.g. 8in30°1'=cos1’—sin 29° 59’

=.999999. .. —.499 75=.500 25,
and 8in 30°2'=cos 2’ —sin 29° 58’
=.999999... —.499 50=.500 50,

So, ¢0830°1'=co8R9°59 —sinl’
=.86617—.00029=.865 88,
and cos30°2 =cos 29° 58’ —sin ' =.865 73.
(¢) For angles 45°- - -90°: apply the formulse
sin (45°+6')=cos (45°—-6'), [1I, theor. 6.
cos (45°+ ') =sin (45°—6').
E.g. 8in45°1'=cos44°59'=.707 31,
- co845°1'=sin 44° 59'=.706 90.
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VERIFICATION.

Note 3. The results are tested in many ways :
(a).-sin 46 =/4(1 —cos f), cos$6=+/4(1+cosb),
. from cos45° = /4, are found in succession the sines
and cosines of 22°30', 11°15'- . ..

So, from cos30°,=44/3, are found in succession the sines
and cosines of 15°, 7°30'. . ..

(). 8in26=2sin ¢ cos b, [11, theor. 13.
co8 30 =4 cos*d—3 cos 6, [11, theor. 15, cor.
and sin 36°=cos 54°, [11, theor. 6.

.. 28in18° cos 18°=4 cos* 18° —3 cos 18°,
. . 28in18°=4(1—sin*18°) -3,
».8in18°=%(4/5—-1), cos18°=}4/(10+24/5);
thence, in turn, the sines and cosines of 9°, 4°30’, 2°15'- ..,
(¢) From cos 36°, =cos® 18° —sin® 18°=} (4/5+1),
and 8in36° =4/(1—cos*36°)=44+/(10—24/5),
are found the sine and cosine of (36°—30°), ¢.e. of 6°, thence
in turn the sine and cosine of 3°, 1° 30’, 45, - - -.
(d) From sin (36°+ ') —sin (36°-- '), =2 cos 36° sin §'
=4(¥5+1)sin 6,
subtract gin (72°+ ') —sin (72°— '), =2 cos 72° sin #'
: =4(4/5-1)s8in §';
then, sin (36°+ 60') —sin (36°—6')
=sin (72°+ ') —sin (72°—6') +sin ' :
a formula that serves to test the sines of all angles from 0° to
90°, if to €' be given the different values from 0° to 18°.
For other test formule, see exs. 7-11, page 55.

Pros. 2. To COMPUTE TABLES OF NATURAL TANGENTS, CO-
TANGENTS, SECANTS, AND COSECANTS.

Divide the sines of the angles, in turn, by the cosines ; the co-
sines by the sines ; 1 by the cosines ; 1 by the sines :
or, replace 0 by 1', %', 8' - - - in the formule of theor. 4, cor. 1.
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PRrROB. 3. T0 COMPUTE TABLES OF LOGARITHMIC FUNCTIONS.

. From a table of logarithms of numbers take out the logarithms
of the natural sines and cosines :

or, replace 0 by 1', ', 3', - -+ in the formule of th. 4, cor. 2.
Subtract the logarithmic cosines from the logarithmic sines ;

the logarithmic sines from the logarithmic cosines ;
the logarithmic cosines and sines from 0.

THE METHOD OF DIFFERENCES.
A more rapid method is this :

Take out the functions of three, four, or more angles at reqular
intervals, and find their several  orders of differences”;

by the algebraic < method of differences,” find the successive
terms of the series of logarithms ;

interpolate for other angles lying between those of the series,
and verify at intervals by direct computation.

For safety, four-place tables must be computed to six places-;
five-place tables to seven places, and so on.

When the terms of any order of differences are constant, or
differ very little, the rule that follows may be applied to form
new terms of the series.

Add the constant difference to the last difference of the next
lower order, that sum to the last difference of the next
lower order, and so on till a term of the series is reached.

In the example that follows, the numbers below the rules are
got by successive addition :

ANGLE. LOG-SINE. FIRST DIF. SECOND DIF. THIRD DIF.
18° 9.489 9824
18° 10’ 9.493 8513 g ggﬁ’ —378
18° 20’ 9.497 6824 5 7040 —371 4
18° 30’ 9.501 4764 Trsne 364 ;
18° 40’ 9.505 2340 - Toto —357 ;

(o] ’ —
18° 50 9.508 9559 - 6369 350

19° 9.512 6428
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V. SPACE TRIGONOMETRY.

SpACE TRIGONOMETRY treats of the relations of the parts of
triedral angles. It is based on the geometry of space, and on
the principles established in plane trigonometry.

§ 1. DIRECTED PLANES.

A directed plane was defined on page 25. Such a plane may
be generated by a straight line swinging about another straight
line that meets it at right angles, in either of two directions.
E.g. let 0z be any straight line, and let 0x, perpendicular to

0z, swing about 0z and take in succession the positions
0X, 0Y, 0X’, 0Y', 0X ;

AZ
Y
X
zl
then o0x generates a plane perpendicular to oz. [geom.

The fixed line about which the other swings is the azis of the
plane ; and if this axis be so directed that its positive end is
in front of the plane, it is a normal to the plane.

E.g. in the figure above, 0z is normal to the plane-generated
by 0ox, but 0z’ is contra-normal to this plane.

The plane is then also said to be normal to the line.
E.g. the plane of the equator is normal to the earth’s axis.
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It will be convenient, in this book, to indicate a directed
plane by naming two directed lines of the plane in such order
that the least rotation about their co-point, from the line first
named to the other, generates a positive angle.

E.g. if I, m be two directed lines that meet, the plane Im is a
directed plane ;
and the plane m! is a directed plane that coincides with /m in
position, but has the contrary direction.
So the plane xoP is a directed plane in which positive rotation
is from ox to op, by the shortest way.
P

G <

The direction of a plane may also be shown by an arrow.

X

THEOR. 1. Three straight lines meeting at a point, and each
perpendicular to the other two, may be so directed that each s
normal to the plane of the other two taken in order.

V4 z

X
Y X

E.g. let 0x, 0Y, 0z be three directed lines such that ox is per-
pendicular to 0Y, 0z, and normal to the plane voz,

that oy is perpendicular to 0z, 0X, and normal to zox,

and that oz is perpendicular to oX, 0Y, and normal to XovY.
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QUESTIONS.

1. If a rod project above a horizontal plane in a direction
parallel to the earth’s axis, in what direction will its shadow
on the plane swing in the northern hemisphere ? in the south-
ern hemisphere ?

So upon a vertical plane ? In what order will the numbers
be placed on a horizontal sun-dial ? on a vertical sun-dial ?

2. To an observer standing behind the transparent dial of
a tower clock, what is the direction of rotation of the clock
hands ? is it the same for all four faces ? is the actual direc-
tion of rotation the same in two opposite faces ?

3. What is a right-hand screw ?

4. In turning on the nuts that keep the wheels of a carriage
upon the axles, is the motion clockwise or counter-clockwise ?
is it the same motion on both sides of the carriage ?

5. As a carriage is driven forward, how do the wheels turn,
to one standing on the right side of the roadway ? to one
standing on the left side ?

6. If when a carriage is driven forward the rotation of the
wheels be positive, what is the rotation when the carriage is
backing ?

7. If a carriage drive past, on which side of the roadway
must one stand that the normal to the plane of rotation of the
wheels may reach towards him ? away from him ?

8. How must a line of shafting be directed so that it shall be
normal to the pulleys that are fixed upon and revolve with it ?

9. If two wheels with parallel axes be so geared that they
revolve in opposite directions, what relation have the normals
to their planes of rotation ?

10. In the figure of theor. 1, how may a point be placed so -
as to be
in front of all the planes X0Y, Y0z, zOX ?
in front of X0Y, Y0z, and back of zox ?
What other positions may a point have ?
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§2. DIEDRAL ANGLES.

If two directed planes meet in a directed line, their co-line,
and one of them, the initial plane, swing about this co-line till
it coincides with the other, the ferminal plane, both in position
and direction, the diedral angle so generated is the angle of the
two planes. .

This angle is directed and measured by the plane angle that
is generated by a normal to the co-line of the two planes, lying
in the initial plane and carried by this plane as it swings about
the co-line till it becomes normal to the co-line in the terminal
plane. The co-line may be directed at pleasure, but however
it is directed the plane of the swinging normal must be taken
normal to this line.

E.g. let the directed planes a, b meet in the directed line x'x,
and let A'A, B'B be normal, in @, b, to X'x at 0}

then the diedral angle ab is directed and measured by the plane
angle A0B, in the plane normal to X'X at o.

So, if the directed co-line be xX';

then AA’, BB’ are normal in a, 8, to XX', at 0, the diedral angle
ab is directed and measured by A'oB’, in the plane nor-
mal to xx’ at o.
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It is to be noted that the angle A'0oB" as seen from X' is the
opposite of A0B as seen from X, and that the angle B'0A’ is the
opposite of BoA ; 7.e. a reversal of the co-line of the two planes
reverses their angle.

THEOR. 2. The angle of two directed planes is equal to the
angle of their normals, as seen from the positive end of the di-
rected co-line of the two planes.

For, in the figure above, draw op, 0Q normal to the planesa, 4 ;
then ." op is normal to A’A in the plane A0B, and 0Q to B'B,

.. the angle Poq is equal in magnitude to the angle 408 ;
[geom.

and -, these angles have the same direction in the same plane,
and the plane angle A0B directs and measures the diedral

angle ab,
.. the angle of the two planes is equal to the angle of their
normals. Q.E.D.

Cor. 1. If the angle ab be a positive right angle, so is the
angle P0Q ; OP lies in the plane b and cotncides with oB, and 0Q
t "*a plane a and coincides with oA'.
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Note. The student of the geometry and trigonometry of
gpace must train himself to see his figures as figures in space,
though shown only by diagrams on a flat surface. For the
most part these diagrams are made up of straight lines and
curves, and when he looks at the points and lines of his dia-
grams, he must see the points, lines, and surfaces in space which
they represent. It will help him to do this if he will close one
eye and, without moving his head, look steadily at his diagram
with the other eye : presently it will stand out.

It will help him, also, if he will hold some object, his book
for example, or a card, or a wire cage, between the light and
the wall : he will learn that the shadows are the pictures, pro-
jections, of his space figures on a plane. Among other things,

_he will see that right angles are rarely projected into right
angles, that circles are commonly projected into ellipses and
sometimes into straight lines, and that lines of the same length
are often unequal ; and he will learn to look back from the
picture to the figure in space.

E.g. in the diagram on page 104, the horizontal circle seems
to be but half as broad as it is long, and the right angles xov,
Yoz are drawn as angles of 60°, while the right angle zox is
drawn as an angle of 120° and appears to be the sum of the
other two.

So, in the figure on page 108, there are three non co-planar
straight lines A'A, B'B, X'X, that meet in a point 0 and deter-
mine three planes that meet in the same point. Three circles
lie in these planes and have 0 as their common centre ; and
these circles determine a sphere whose centre is o.

To make this figure stand out more clearly arcs that lie on
the front of the sphere are shown by full lines, while those that
are behind either of the other planes are shown by broken
lines ; and so for the diameters.

The front edge of the horizontal circle is tipped down, while
the normal op is tipped forward and does not show its full
. length.
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§8. PROJECTIONS.

The projection of a point on a line was defined on page 31.

The projection of a point on a plane is the foot of the perpen-
dicular from the point to the plane.

The projection of a directed line on a plane is the co-line of-
the given plane and a plane perpendicular to it through the
projected line.

The plane of projection is that plane on which the projec-
tion is made, the perpendicular plane is the projecting plane,
and the co-line of the two planes is the line of projection.

The angle of a line and a plane is the angle of the line of
projection on the plane, when directed, and the given line.

D

,.T‘
|

\
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“—A|l m
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The projection of a segment of a directed line on a plane, or
on another directed line, is the segment of the line of projec-
tion that reaches from the projection of the initial point of the
given segment to that of the terminal point. It is a positive
segment if it reach forward, in the direction of the line of
projection, a negative segment if it reach backward. The
projection of a broken line upon a directed line is the sum of
the like projections of the segments that constitute the broken
line, and it is equal to the projection of the segment that
reaches from the first initial to the last terminal point.

The angle of two directed lines that do not meet is that of
any two lines narallel to the given lines that meet and reach
forward ir ~ti~== -~ *he lines,

-
=

/.
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THEOR. 3. If a segment of a directed line be projected on
another directed line, the projection is equal to the product of
the segment by the cosine of the angle of the two lines.

(a) The two lines co-planar. [II, theor. 10.
() The two lines not co-planar.

For, let 7, m be two directed lines not co-planar, and let AB be
a segment of /, and A'B’ be its projection on m ;
through A’ draw 7' a line parallel to / and like directed, and

through A, B8 draw planes perpendicular to the line m ;
then". these planes are parallel, and A'B", AB are segments of
parallel lines cut off by parallel planes,

S A'B"=AB; [geom.
and .- angle !'m =angle Im, [df. ang. twolines.
and A'B'=A'B"cosl'm, [11, theor. 10.

.. A'B'=AB coslm. Q.E.D.

CoRr. The projection of a broken line upon a directed line is
the sum of the products of the segments that constitute the
broken line by the cosines of their angles with the line of pro-
Jection.

E.g. in the figure above, let 0X, 0Y, 0z be three directed lines,
each normal to the plane of the other two ;

let P be any point in space, and project p on the plane oxY at
B, and B on 0X at A ;

then the projection of the broken line 0ABP on o is op,
and OP=0A cos XOP+ AB COS YOP + BP CO8 ZOP.
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§4. TRIEDRAL ANGLES AND SPHERICAL TRIANGLES.

If three planes meet at a point, they form a ¢riedral angle.
The three face angles and the three diedrals of a triedral are
its six parts.
If three directed lines be given that meet at a point, they
may be taken in such order and their three co-planes may be
so directed that all the parts of the triedral shall be positive
and less than two right angles ; and so, if three directed planes
be given, their co-lines may be so taken and directed that all
the parts shall be positive and less than two right angles.
E.g. if Boc, coA, A0B be three planes whose directed
co-lines are 0A, 0B, O0C,

and if these three planes be so directed that the three face
angles BOC, COA, A0B, and the three diedrals
COA-AOB, AOB-BOC, BOC-COA are all positive and
less than two right angles ;

then the triedral 0-ABC may be called the ideal triedral of
the points A, B, ¢, as to the centre o.

The three directed planes of a triedral Boc, coA, ao0B
may be named by the three Roman letters g, 4, ¢, and so may
the three plane angles BoC, CO0A, AOB; and the three
diedrals COA-AOB, AOB-BOC, BOC-COA by the three Greek
letters a, B, y,andsor- ‘' ' ‘“ree co-lines 04, 0B, oc.
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POLAR TRIEDRALS.

If through any point normals be drawn to the three faces of
a triedral, these normals lie, two and two, in planes perpen-
dicular to the three edges of the triedral [geom.], and if these
new planes be so directed that they are normal to the edges of
the first triedral, a new triedral is formed so related to the other
that the edges of either of them are normal to the faces of the
other. Two such triedrals form « pair of polar ¢riedrals. . The
simplest case of such a pair of triedrals is where the six planes
all pass through the same point.

- THEOR. 4. In any pair of polar triedrals, the face angles of
one of them are equal to the diedrals of the other.
For the angle of a pair of directed planes is equal to that of

" their normals. [theor. 2.
8 :
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SPHERICAL TRIANGLES.

If any point be taken as the centre of rotation of a directed
plane, and a sphere be described about this point as centre, the
co-line of the plane and sphere is a circle of rotation of the
plane, and so it is a directed great circle of the sphere that has
the same direction as the plane.

If any diameter of this circle be directed, the tangent at its
positive end reaching forward in the direction of the circle is
normal to the diameter, and that at its negative end is contra-
normal. That diameter of the sphere which is normal to the
plane is the axis of the great circle, and its ends are the posi-
tive and negative poles of this circle.

E.g. the earth’s north and south poles are the positive and
negative poles of the plane of the equator.

If two directed planes pass through the centre of a sphere,
they cut it in two directed great circles ; and if their co-diam-
eter be directed, tangents at its positive end that reach for-
ward in the direction of the circles are normal to this diameter,
and their angle, in a plane facing the positive end of the diam-
eter, measures the diedral angle of the planes. So the tan-
gents at the negative end of this diameter are contra-normal,
and their angle is equal to the other in a plane facing the same
way. The angle of the axes of the two circles is equal to that
of the two planes. [theor. 2.

E.g. the angle between the plane of the equator and that of
the ecliptic, both west-to-east planes. is 23° 27",
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If about the vertex of a triedral angle as centre, a sphere be
described, the co-lines of this sphere with the three directed
planes are three directed great circles, and together they form
a spherical triangle whose sides subtend the face angles and
whose angles, when viewed from the positive ends of the edges,
measure the diedrals of the triedral. The sides meet on the
co-diameters of the great circles, i.e. on the edges of the trie-
dral, and these points are the vertices of the triangle,

If two polar triedrals have a common vertex, and a sphere be
described about this vertex as centre, the six directed circles
cut from the six directed planes by this sphere form a pair of
polar spherical triangles, such that the vertices of the one are
the positive poles of the sides of the other, and the sides of the
one, measuring the face angles of the triedral, are equal to the
angles of the other.

In this figure, the line 0A is normal to the plane B'oc’, 0B
to c'0A’, oc to A'0B'; 04’ to Boc, OB’ to coA, OC’ to AOB,
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THE SIXTY-FOUR TRIEDRALS OF THREE CO-POINTAR LINES.

If A's, B'B, ¢'c be three diameters of a sphere that do not
lie in the same plane, each of these lines may have either of
two directions. It follows that either A or A" may be taken as
the positive end of the diameter A’a, and so for B,B’ and for
¢, ¢, and that there may be eight distinct sets of three points
on the surface of the sphere:

A, B, C, A, B, C, A, B, C, A, B, C,

A',B,0, A',B,C, 4,B,C¢, A,B,C,
1.e. that these three diameters form eight distinct spherical
triangles; and eight distinct triedrals, in the geometric sense.

So, each of the three planes of these three diameters, taken
two and two, may have either of two directions, and the tri-
angle of one set of points may have eight distinct forms.

Sixty-four triedrals and sixty-four spherical triangles are
thus formed with the same three diameters of a sphere, whose
sides are all positive and less than four right angles, and
whose angles may be positive or negative.

These triangles are called the primary triangles, and other
triangles congruent with these may be formed by adding mul-
tiples of four right angles to either angle, or one or more great

_circles to either side.
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§5. GENERAL PROPERTIES OF TRIEDRAL ANGLES.

Lem. 1. If at any point of an edge of a triedral a normal be
drawn to the opposite face, and if through this normala plane be
drawn normal to another edge, the co-lines of this plane with the
planes adjacent to the edge are perpendicular to theedge. [geom.

" If these lines be so directed that they are normal to the edge,
each in its own plane, the angle of these two normals is equal to
the diedral of the two planes. [df. ang. of two planes.

The normal first drawn is normal to that one of the two nor-
mals which lies in the opposite face.

E.g. let 0-ABC be a triedral angle, through » any point on the
edge oA draw ED normal to the opposite face Boc,

and through D, draw planes normal to the edges o8, oc, cut-
ting 0B in F, and 0oC in G ;

then the lines DF, FE are perpendicular to 0B, and EG, GD to oC :

and if DF, FE be directed normal to 0B, and EG, D to ocC *

then the plane angle DF-FE is equal to the diedral AoB-Boc,
and EG-GD to BOC-COA. [df.

So the line Ep, drawn normal to the face Boc, is normal to the
line FE in the plane EFD and to the line EG in GED.
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To make clear the relations of the parts of the figures on
page 118, construct a space model as follows :

Use card-board or stiff paper, and with any centre o and any
convenient radius draw a cirele ;

draw the radii oa, 0B, oc, 0A’, making the angles A0B, Boc,
coA’ equal to the given face angles ¢, @, b ;

on 0A, oA’ take oD, oD’ equal, and draw DF, GD' normal to 0B,
oc at F, 6, and meeting each other in E;

cut out the figure, and fold along 08B, oc;
bring 04, oA’ together, and join E, D with a thread :
ED is normal to the plane Boc and to the lines FE, EG.

The right triangles ¥Ep, EGD are shown in the figure as
hinged at FE, EG, and folded down into the plane of the draw-
ing. The point D is shown at H, H'. These triangles turn up
when the two faces A0B, coA’ are turned up, and with them
they form a solid figure.

Of the six figures on page 118, the upper middle figure is
a space figure, the lower middle figure shows the base of this
figure in its own plane, and the right triangles, at the right and
left, are the right triangles of the space figure, each shown of
its true size and in its own plane.

The eight figures on page 119 show the eight spherical tri-
angles of page 117, with the lines ED, DF, FE, EG, GD drawn as
in the figure on page 118. The reader-will note the directions
of these lines, and the consequent directions of the diedrals
a, B, y. The lemma applies to all the figures alike.
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§6. GRAPHIC SOLUTION OF TRIEDRAL ANGLES,

By a graphic solution is meant a geometrical construction
of the required figure, such that the parts sought are deter-
mined and shown without the nse of algebraic formule and
without computation. Such a solution, often useful of itself
and quickly made, serves also as an effective check on the
results of numerical computation.

ProB. 1. GIVEN THREE PARTS OF A° TRIEDRAL ANGLE, TO
CONSTRUCT THE OTHER THREE PARTS :
(1) Given the three face angles, a, b, ¢ :

Through any point 0 of the plane of the paper draw rays o4,
0B, 0C, 0A’, making the angles A0B, BoC, coA’ equal to
the given face angles ¢, a, & ;

with 0 as centre and any radius, cut 0A, oA’ in D, D';
draw DF, GD' normal to 0B, 0C, and meeting each other in E;
through E draw normals to DF, ¢D’, and cut these normals, on
their positive ends, by the circles Fp, 6D, ¢.e. by the cir-
cles whose centres are F, @, and whose radii are ¥p, GD',
in H, H;
join FH, GH'; )
then the plane angle HF-FE is'equal to the diedral g,
and the plane angle £G-GH' is equal to the diedral y.
For, revolve the right triangles FEH, H'EG about FE, B¢ till
EH, EH' are both normal to the plane @ and coincide ;
and revolve the right triangles DFo, 06D’ about 08, oc till 04,
~ 04A' coincide in front of the plane a ;
then'.' the right triangles FEH, FED have coincident planes,
the same base FE, and equal hypotenuse HF, DF,
.~ the perpendiculars EH, ED are equal.
So, ' EH', ED’ are equal, the points H,D, H',D’ coincide, and
the figure of lem.1 is reproduced ;
.. the plane angles HF-FE, EG-GH' are equal to the die-
drals g, y.
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To construct the diedral «, arrange the face angles in the
order a, b, c or b, ¢, a, and then on as above.
(0) Given the three diedrals, a, B, y :
Construct the polar triedral, taking angles equal to a, 8, y for
the face angles ;
then the three diedrals that are found are equal to the three
face angles a, &, ¢ that are sought.
(¢) Given a diedral and the two adjacent face angles, 8, c, a:
Through any point 0 in the plane of the paper, draw rays 04,
0B, 0C, making the angles A0B, BocC equal to ¢, @ ;
with o as centre and any radius, cut oA in D, and draw DF
normal to oB at F;

through F draw a line such that the angle of DF with this line
is equal to the diedral @, and cut this line on its nega-
tive end by the circle ¥p, in H;

through ® draw the normal to pFat E;

draw EG normal to oc, cutting the circle op at »’, and through
D' draw 0A';

then the angle coa’ is equal to the face angle 4.

The diedrals y, &« may be constructed as in case (a).

(d) Given a face angle and the two adjacent diedrals, b,y, a :

Construct the polar triedral, taking angles equal to 4, y, a for
a diedral and the two adjacent face angles ;
then the face angle and two diedrals that are found are equal

to the diedral and two face angles g, ¢, a that are sought.
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(e) Given two face angles and an oppusile diedral, b, ¢, B :
Through any point o in the plane of the paper, draw the rays
00, 04, 0B, making the angles coA, A0B equal to the face
angles b, ¢ ; :
with 0 as centre and any radius, cut 0A in D
through » draw @D normal to oc, and DF normal to 0B ;

through F draw a line such that the angle DF makes with this
line is the angle g,
and with circle ¥p cut this line on its negative end in H;

through B draw EH normal to DF, and with H as centre and
radius GD cut DE in X ;

and through o draw oc’, oc” tangent to the circle EK at @', G";

then either Boc' or Boc” is the face angle @; and the other
parts may be constructed as above.
There is no triangle if éD<EH; one, a right triangle, if
GD=EH; two, if HF>GD>EH ; one, an isosceles triangle, if
GD=HF; one, if GD>HF.
(f) Given two diedrals and an opposite face angle, 8, v, b :
Construct the polar triangle, taking angles equal to 8, y, & for
two sides and a diedral opposite one of them ;

then the face angle and the two diedrals that are found are
equal to the diedral and two face angles a, ¢, @, that are
sought,
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§ 7. FOUR-PART FORMULAZ.

The reader will note the complete generality of the proof of
the LAW OF cOSINES and of the LAW OF SINES, no limitation of
the sign or magnitude of any part being imposed, and the con-
sequent generality of the formule that depend upon these laws.

THE LAW OF COSINES,
THEOR. 5. In a triedral angle :

(2) The cosine of a face angle is equal to the product of the
costnes of the other two face angles less the product of their sines
by the cosine of the opposite diedral :

.. co8a=cosh cosc—sinb sinc cosa,
co8 b=cosc cosa —sin c sina cos 3,
cos c=cosa cosb—sina sin b cos y.

For, let 0-ABc be a triedral angle, through D any point on the
edge oA draw ED normal to the opposite face Boc,

and through ED, draw planes normal to the edges 0B, oc, cut-
ting 0B in F, and oC in G ;

then the lines DF, FE are perpendicular to oB,-and G, @D tooc,
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and - the projections on 0¢ of oD and of the broken line oFED
are equal, [df.
and projED=0, [ED perp. to oc.
.". proj 0D = proj OF + proj FE,
+*. proj 0D/0D=proj OF/0D +proj FE/OD,
.. proj op/oD=proj OF/OF-0F/0D
+proj FE/FE-FE/FD-FD/OD,
." CO8COA = COSCOB - COSBOA + COSOG-FE- COS FE-DF+8in Bu.A.
t.e. cosb=cos(—a)cos(—c)+cos(R—a)cos(—)sin (—c);

..cosb=cos¢ cosa—sin ¢ sina cos £. [1T, theors. 5, 6.
Q.E.D.
So, - the projections on 0B of oD and the broken line 0GED
are equal,
.. cosc=cosa cos b—sin g sin b cos y. Q.E.D.

So, if D be taken a point on 0c, and ED be normal to the face ¢ ;
then cosa=cosd cosc—sinbd sinc¢ cos a. Q.E.D.

The reader may well examine this proof with care: he will
see that it is conclusive ; but he may ask what suggested the
several stepsin the tenth and eleventh lines. Only this: it was
necessary to eliminate the lines which appear in the equation

proj ob=proj OF + proj FE,
and to bring in the ratios.

Dividing by op, the first ratio projop/op appears at once
as one of the ratios sought. But projor/op isnot such a
ratio, and the line oF that joins the projection of oF to ob is
‘used as an intermediary line ; then the ratio projor/op is
written as the product of the two ratios proj or/oF, oF/oD,
which can be interpreted.

So, the ratio projFE/0oD cannot be interpreted, and the
two lines FE, FD that join the projection of FE to oD are used
as intermediary lines ; then the ratio projFE/oD is written
as the product of the three ratios proj FE/FE, FE/FD, FD/0D,
which can be interpreted.
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(8) The cosine of a diedral ungle is equal to the product of the
cosines of the other two diedrals less the product of their sines
by the cosine of the opposite face angle :

i.e. cosa=cos [ cosy—sin 3 sin y cosa,
‘cos B=c08 y cos a—sin y stn a cos b,
€08 y =08 a cos §—sin a sin B cosc.

For, leta', ¥, c, a', B, y' be the parts of a triedral polar to
the given triedral,
then'. a'=a, 6'=6, ¢'=y, a'=a, =86, y'=c, [theor.4
and cosd'=cosc cosa’ —sinc sina’ cos £, [above.
.".cos f=co8 y cos a—sin y sin a cos d.

So, cos y=cos a cos #—sin a sin g cosc,
cos a=cos g cos y —sin g sin y cosa. Q.E.D.

Cor. 1. cosda=[sin (s—b) sin (s—c)/sinb sinc],
[s=4(a+b+¢).
costa=+/[sin (o~ p) sin(c—y)/sin B siny],
[o=4(a+B+y).
For . 2cos*ta=1+cosa [II, theor.13, cor. ~
=1+ (cosd cosc—cosa)/sind sinc [(a).
=(cos b cosc+sin b sinc—cosa)/sin b sinc
=[cos (b —c)—cosa]/sinb sin¢ [II, theor.11.
=—-2sin4 (b—c+a)sin} (b—c—a)/sindsinc
[II, theor.12
=2sin4(a—b+c)sing (e+b—c)/sinb sinc
=2sin (s— ) sin (s—¢)/sin b sin¢,
.~ cosfa=4/[sin (s—) sin (s—c¢)/sin b sinc.] AQ.E.D.
So, *.2cos’4a=1+cosa
=1+ (cos £ cos y —cos ) /sin B sin y,

~.cos 4a=4/[sin (6 — B) sin (6 — y)/sin B sin y].
Q.E.D.
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CoRr. 2. sinya=[sin s sin (s—a)/sin b sinc],

For -

So, .

sinta=y[sinosin(c—a)/sinf siny].

s 2sin*fa=1-cosa [11, theor. 13, cor.

=1—(cosd cosc—cosa)/sin b sin ¢ .
=[cosa—cos(b+c¢)]/sinb sin¢ [II, theor.11.
= —2sin4 (a+b+c)sing (@—b—c)/sind sine

[11, theor.12.
=2sin 8 sin (s—a)/sin b sine,

.8in 4= 4/[8in s sin (s —a)/sin b sinc]. Q.E.D.

‘2 sin*4a=1—cosa

=1—(cos @ cos ¥ —cos a)/sin £ gin y,

" sin Ja= 4/[8in ¢ sin (6 — @) /sin B sin y].

CoRr. 3. tan ja=y/[sin s sin (s—a)/sin (s—0) sin (s—c)],

tan fa=y/[sino sin(c —a)/sin(c— f) sin(o—y)].

Cor. 4. If a, b, ¢, a, B, y be all positive and less than two
right angles, and A, B, c be the interior diedrals, then :

“For .
S COSa@=—C0SA, cosff=—COo8B, CO8Yy = —COSC,

cos @ =c08b cosc+8inbd sinc cos A,

CO8 A= —C08B c08C+8In B SInC cos a;

sin JA=4/[8in (s—b) stn (s—c)/sin b sinc],

stnia =+/[$in E stn (A—E)/sin B sinc];
[E=4(a+B+C—2R)

coz 3A =W/ [sins sin (8—a)/sinb sinc],

cos ya = «/[8in(B—E) 8in (C—E)/8in B sinc] ;

tania=+/[8in (s—0) sin (s—c)/sin s sin (s—a)],

tan ya =/ [sin E sin (A —E)/8in (B—E) sin (c—E)].

A, B, C are supplementary to a, 8, y,

sina =sin A, sin § =sin B, sin y =sinc,
0=SupE, 6—a=A—E, O0—f=B—E O6—y=C—E
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THE LAW OF SINES.

THEOR. 6. In atriedral angle, the sines of the face angles are
proportional to the sines of the opposite diedrals.

t.e. sina/sina=sinb/sin f=sinc/sin y.
For let 0-ABcC be a triedral angle, through D any point on the
edge oA draw ED normal to the opposite face Boc,

~ and through ED, draw planes normal to the edges 0B, oc, cut-
ting 0B in F, and ocC in G ;

")

E G

then the lines DF, FE are perpendicular to 0B, and EG, GD to 0C ;
and . the projections of the broken lines 0FD, 0GD on ED are
equal, [df. proj.

and  projoF=0, projoa=0, [oF, oG perp. to ED.

.". proj FD=proj GD,

.. proj FbD/oD = proj GD/0OD,

.. proj Fb/Fn-FD/OD=proj GD/GD-GD/0D,
f.e.  sin FE-DF-8in BOA =8in EG-GD-sin COA ;

*.sin (—f) sin (—¢)=sin ¥ sin b,

..sin Bsinc=sinysind and sind/sin S=sin¢/sin y.
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So, if D be taken a point on oc, and ED be normal to the facee,
then sina/sina=sginb/sin g ;

.".sina/sin @=sgin b/sin S=sin ¢/sin . Q.E.D.

Cor. If a, b, ¢, a, B, y be all positive and less than two right
angles, and A, B, C be the interior diedrals, then :
sina/stn A=sin b/sin B=3sin ¢/sin C.

For . theangles a, A are supplementary, and so are §,Band y,c,

.sinA=sina, sinB=sin B, sinc=sin y. [1I, theor. 8.

Nore 1. If the theorem be regarded as relating to a spher-
ical triangle, it may be written : T%e sines of the sides of a spher-
tcal triangle are proportional to the sines of the opposite angles ;
and the law of cosines may be expressed in like form.

QUESTIONS.

If ABc be any spherical triangle, then :
1. sin4a sin46/cos 4y =sins/sine,
2. sin4a 8in b /cos4¢ =sin 6/sin y,
3. cosja cos}f/cos 3y =sin (s—c)/sine,
4. cosda cosid /cosfe =sin (o —y)/siny,
5. sina cos4f/sin 3y =sin (s— a)/sin_c,
6. sin4a cosdd /sin 4¢ =sin (6 —a)/siny,
7. cotda/cot 4y =sin (s—c¢)/sin (¢ a),
8. cot4 a/cot 3¢ = sin (6 — y)/sin{7 —a),
9. cot$p cot4y=sin(s—a)/sins,
10. cot4b cot ¢ = sin (6 —a)/sin o,
11. sin (s—a) cot $a=sin (8 —b) cot 4B =sin (s—c) cot }y.
12. sin (0 —a) cot§a=sin (o — f) cot yp=sin (6 —y) cot z¢.
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Nore 2. The law of sines may be proved by aid of the law
of cosines as follows :

For . cosa =cosbd cosc—sind sinc cos a,
..cosa =(cosd cosc—cosa)/sinb sine,
. sin*a, =1—cos'a,=1—(cos b cos c—cos a)*/sin* sin’,
.. sin*a/sin*e
=[sin® sin’c— (cos & cos ¢ — cos a)*] /sin’a sin% sin'c
=[1—cos'a —cos®® — cos’c
+2cosa cos b cosc]/sin’e sin® sin%e ;
and °.- this value is symmetric as to q, 5, c,
..8in*4/sin%, sin'y/sin’¢ have the same value,
.. sina/sin*a =sin*S/sin*h = sin'y /sin’c. Q.E.D.
Or as follows :
*.* gin*a = [8in* sin*c— (cos & cos ¢ — cos @)*] /sin* sin’c,
=[8in b sinc—cos b cosc+cosa]
-[sin & sin ¢+ cos b cos ¢— cos @] /sinh sin’c

=[cosa—cos (b+c)]- [cos (b—c) —cosa]/sin’ sin’e
=4sing(a+b+c)-sin (b+c—a)-sing(a—b+c)
-sing (@ +b6—c)/sin'h sin’e,
", sin'a/sin*a=4sgin s-sin (s —a)-sin (s —5) -sin (s —¢)

. /sin’a 8in% sin’c,
and this value is symmetric as to a, b, ¢,
.. sin'a/sin’a =sin’B/sin? =sin*y /sin’c. Q.E.D.

NotE 3. By v.Staudt the expression
(1 —cos’a — cos’® —cos’c +2 cosa cos b cos ¢)
is called the sine of the spherical triangle, and the expression
¥ (1—cos’a—cos’S —cos’y +2 cosa cos B cos y)
the sine of the polar triangle. Casey has called them the first

staudtian and second staudtian. The first staudtian is equal
to either of the products,

sindsincsina, sincsinesing, sinesindsiny;
and the second staudtian to either of the products,
sin @ sin ¥ sina, siny sinasind, sina sin B sine,
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§8. ANGLES BETWEEN LINES IN SPACE, AND BETWEEN
PLANES.

Let 0X, 0Y, 0z be three lines through a point o, so directed that
each is normal to the plane of the other two taken in
order,

1.e. 80 that 0x is normal to the plane Yoz, 0Y to zZox, 0z to Xo¥;

then also the angles Yoz, ZoX, X0Y are positive right angles as
seen from X, Y, z.

11

4

=]

1

Let op be any other line through o ;
then op is completely determined by the angles xop, Yop, zop.

Let I, m, n = cos X0OP, cos YOP, COS ZOP ;
then 7, m, n are the direction cosines of op, and determine it,
So, ?, m, n and a point determine a plane through the point,

normal to op, and I, m, n are called the direction cosines
of the plane.

The direction cosines of a line not through o are the direc-
tion cosines of a line through o parallel to the given line.

THEOR. 7. If I, m, n be the direction cosines of a line in space,
then P+mt+n*=1,

For draw op parallel to the given line, through p draw a line
parallel to 0z, meeting the plane X0y in B;

through B draw a line parallel to 0Y, meeting oX in A ;
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then'.' 0A, AB, BP are the non-parallel edges of a rectangular
parallelopiped and op is its diagonal,
.. 0A*'+ 0B+ BP*=0P* and 0A?/0P*+0B'/0P*+BP/0P'=1;
t.e. P+m*+nt=1. Q.E.D. [df. dir. cos.
~ THEOR.8. If I,m,n, U,m',n' bethe direction cosines of
two directéd lines in space, and a their angle, then :
cos a=10'+mm’+nn'.

For through o draw op, op' parallel to the two given lines, and
draw BP normal to the plane XoY at B, and AB normal
to oX at A ;

zp 4

project op and the broken line 0ABP on or';
then'. proj oP=proj 0A + proj AB + proj Bp,
.. proj OP/0P=proj 0A/oP+ proj AB/0OP + proj BP/0P
=proj 0A/0A:0A/OP+proj AB/AB- AB/OP
+proj BP/BP-BP/OP;
and *.' 0A=proj opP on 0X,
AB=Droj op on 0y,
BP= proj op on 0z,
", €08 &= COS XOP' - C08 XOP + €08 YOP' - COS YOP
+ €08 ZOP'+ €08 ZOP,
i.e. cosa=Ul'+mm' +nn'. Q.E.D.

CoRr. If a be a right angle, then I’ +mm' +nn'=0.
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THEOR. 9. If U, m,n, U,m',n bethedirection cosines of
two directed lines that meet in space, a their angle, and A, u, v
the direction cosines of their plane, then :

A=(mn'—m'n)/sin a,
u=(nl'—n'l)/sin a,
v=(Im'—I'm)/sin a.
For . the normal to the plane is perpendicular to every line of
the plane, and so to the two given lines,

SIA+mu+nv=0, UA+m'u+n'v=0; [theor. 8, cor.

and . A'4pt+ =1, [theor. 7.
A= (mn'—m'n) [solve for A.
/N [(mn' —m'n)*+ (nl' —n'1)* + (Im' —I'm)*] ;
and " P4+mr+nt=1, IPm+n= 1, i " [theor. 7.
SoA=(mn' —m'n) /N [1— (0 +mm’ +nn')?],
=(mn'—m'n)/sin « ; and so for u, v. Q.E.D.

Note. A new proof of the LAW OF COSINES may be made
from the principles established in theors. 7, 8, 9.

Let a, B, y be three directed lines in space that meet and
form a triedral angle, whose face angles are a, 3, ¢ and
whose opposite diedrals are a, £, y, as shown in § 4;
let l,m,n, U,m',n', I',m',n" bethe direction cosines of
the lines a, B, y,
and A, u, v, A, 4, v, A", W', v" be the direction cosines
of the planes By, ya, apB, i.e. of the planesa, b, c;
then'. A= (m'n" —m''n')/sina, '=(m"n—mn")/sin b, [th.9. .
pu=@n'T"-n"l')/sina, p'=(n"l—nl")/sind,
v=Um"—1"m')/sina, v'=("m—im")/sinb;
and “.-cosy =AA'+ uu' +vv/, [theor.8.
SCOBY = [(m}n” —m'"n') (m"n—mn")+ (n'l"—n"l')
(n"1—nl")+('m" = U"m")(I"m —Im")] /sin @ sin b
=[(V" +m'm" +n'n") (I"l+m"m+n'"n)
— (W +mm' +nn') (I'"+m'" +n'"")]/sina sin b
=[cos @ cos &—cos ¢]/sin @ sin b, [theors.7, 8.
.. CO8 ¢ =08 @ €08 b—sin @ sin b cos y.
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So, cecosa =AN"+uu +v'v"
‘ =(cos b cos c—cos a)/sin b sin ¢,
».cosa =co8 b cos c—sin 4 sin ¢ cos a.
So, "cosf =A"A+u'u+v'v
=(cos ¢ cos @ —cos b)/sin ¢ 8in a,
.. c08 b =cos ¢ cos @ —sin ¢ 8in & cos G,
So, *.cos ¢ =U'+mm' +nn'
=(cos a cos F—cos y)/sin « sin G,
».co8y =cos a cos §—sin a 8in B cosc;
and so for cos a, cos G.

§9. FIVE-PART FORMULAZ.

THEOR. 10. In a triedral angle whose parts area, b, c, a, 8,y,
8in b cos y +cos ¢ sina+sinc cosa cos f=0,
sinc cos S+cosbh sina+stnbd cosa cosy=0;
sinc cosa+cosa sind+sina cosb cos y=0,
8tn a co8 y +cos ¢ 8in b+stn ¢ cos b cos a=0;

sina cos B+cos b sin c+8in b cos ¢ cos a=0,
8in b cos a+cosa stn c+sina cos ¢ cos $=0;
For, project the broken line GOFE on Ea ; _
then",* proj co=0, [ao perp. to EG
.. proj OF + proj FE=GE,
. Proj OF,/0D + proj FE/0D = GE/0D,
.. proj OF/OF - OF /0D + proj FE/FE-FE/FD-FD/OD
=GE/GD-GD/0D,
.". €08 EG-OF - COS BOA + €0S EG-FE- C08 FE-DF-8in BOA
=c08 EG-GD-8in COA,
i.e. cos(—R—a)-cos(—c)+cos(—a)-cos(—p)-sin(—c)
=cos y-g8ind;
*.* —sina cosc—cosa cos @ sinc=cos y sind,
.. 8in b cos ¥+ cosc sin @ +sin ¢ cosa cos /S": 0. Q.E.D.
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So, project the broken line FOGE on FE

")

then'." proj Fo=0, [Fo perp. to FE.
.. proj 0G + proj GE=FE,
.. proj 0G/oDp + proj GE/0D=FE/0D,
.. proj 06 /0G-0G/0D + proj GE/GE: GE/GD-GD/0OD
=FE/FD-FD/OD,
t.6.  cos (FE-0G)-CO8 COA +C08 FE-EG - c08 EG-GD-§in CO.A
=08 FE-DF-8in BOA ;
.. cos (@ —R) cos b+cosa-cos y-gind
=cos (—f)-sin (—¢),
..8ina cos b+cosa cos y sin b= —cos B sinc,
~.8inc¢ cos f+cos b sina+s8ind cosa cosy=0. Q.E.D.
So, with normals drawn to the planes b, ¢, in turn, the other
four formule may be proved directly ;
or they may be inferred by symmetry, from the two formula
just proved, ¢.e. the third and fifth from the first, and
the fourth and sixth from the second.
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COR. 8tn 5 cos y +co8 ¢ 3tn a+8in y cosu cos =0,
8in y cos8 f+cosh sin a+38in [ cosacos y=0;
8in y cos a+cosa sin f+8in a cos b cos y:ﬁ,
8in a cos y +cos ¢ sin B+sin y cosb cosa=0;

sin a cos $+cos b sin y +sin B cos ¢ cos w=0,
8in 8 cos a+cosa 8in y +8in a cos ¢ cos 5=0.
For *." sin a/sin @ =sin &/sin f=sin ¢/sin y, [law of sines.
..sina, 8ind, sin¢ may be replaced by sin a, sin g, sin y
in the formule of the theorem, and those of the corol-
lary result directly.

Note 1. The formule of the theorem and those of the corol-
lary may be paired in such manner that, if one of them be taken
as applying to a triangle, the other is seen to be true for the
polar triangle.

E.g. the fourth formula of the corollary may be paired with the
first formula of the theorem.

Such a pair of formulae may be called a pair of polar formule.
Note 2. The law of cosines may be proved by aid of the for-
mulee given above, and without the polar triedral.

E.g. Multiply the first formula of the corollary by cos § and
subtract the product from the last formula ; then cose¢
is eliminated ;

and *." sin 8 cosa—sin 8 cos B cos y +cosa sin y (1 —cos’f) =0,

..cos w=cos # cos y —sin @ 8in y cosa. Q.E.D,
So, conversely, the formuls of theor. 10 may be found from
the law of cosines by retracing these steps.

QUESTIONS.
Which formula of the corollary may be paired with the
- gecond formula of the theorem ? with the third ? with the
fourth ? with the fifth ? with the sixth ?
Rewrite the formula of the corollary so as to show their cor-
relation with those of the theorem, letter for letter and term
for term.



10, 11, §9.] FIVE-PART FORMULZ. 137

NAPIER'S ANALOGIES.
THEOR. 11. In atriedral anglewhose parts area,b,c,a, B, y,
tan §(B+y)/tan ya = —cos §(b—c)/cos §(b +c),
tan 3(B—y)/tan a = —sin }(b—c)/sin $(b+¢),
tan §(b+c)/tan ya= —cos (B —y)/cos 3 (B+y),
tan §(b—c)/tan ja= —sin }(B—y)/sin (B +y).
For, add the fourth and fifth equations of theor. 10,
then sinea (cos f+cosy)+(1+cose) sin (b+¢)=0;
and °.' sin @/8in @ =gin §/sin B =sin¢/sin y
=(sind+sinc)/(sin B+sin y),
<. 8in@=(sin & +sin ¢) sin a/(sin B +sin y),
< (L+cos @) sin (b+c¢)
= —(sin b +sin ¢) sin a (cos B+ cos y)/(sin B +sin y),
.~ (sin B+8in y)/(cos B +cos y)- (1+cos a) /sin &
= —(sind+sinc¢)/sin (5+¢) ;
. 28in (B +y) cos§(B—y)
/2cos}(B+y)cos j(B—y)-cot fa
= —2sin (& +c¢) cos3(d—c)/2sin §(b+¢) cos §(d+¢).
 [II, theor.12.
s tan §(B+y)/tan fa= —cos §(b—c)/cos §(b+¢). Q.E.D.
So, ‘.’ sina/sin a=(sind—sine¢)/(sin B —sin y),
.. (1+cosa) sin (5+¢)
= —(8in & —sin ¢) sin & (cos B+ cos y)/(sin B —sin y),
and tan (B —y)/tan ja= —sin §(b—¢)/sin (b +c).
So, add the first and second equations of theor; 10, cor.,
then sin & (cosd+cosc)+(1+cosa) sin(B+y)=0;
and °.* sin @=sin ¢ (sin §+sin ) /(sin b +sin ¢),
.~ (14cosa) sin (B+y)
= —(sin B +sin y) sin a (cos b+ cosc)/(sin b +sin ¢),
aund  tan 3(d+c)/tan Ja= —cos §(B—y)/cos §(A + y).
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8o, .’ sin a=sin g (sin f—sin y)/(sin b—sinc),
< (14cosa) gin (B+y)
= —(8in #—sin y).gina (cos & +cos ¢ )/(sin b—sin ¢),
and tan§(d—c)/tan ja= —sin }(B—y)/sin §(B+y).
Cor. If a, b, c, a, B, y be all positive and less than two right
angles, and A, B, C be the interior diedrals, then : ,
tan }(B+¢)/cot A =cos §(b—c)/cos (b +c),
tan §(B—C)/cot yAo=8in(b—c)/sin §(b+c),
tan $(d+c)/tan ya =cos §(B—c)/cos (B +C),
tan (b —c)/tan fa=sin}(B—c)/sin(B+0C).
NoTE. Another proof of Napier’s analogies is given below :
it does not use the formuls of theor. 10, and it has the single

defect that it employs radicals, and so is not free from ambig-
uous signs.

tan § (8 + y)/tan ja [II, theor. 11, cor. 1.
" =(tan 6 +tan }y)/tan ja (1 —tan 4 tan 1y)

‘/ 8in 8 sin (8—8) ‘/ sin 8 sin(s—¢)

__¥Y gin(8—c) sin (s—a) sin (s —a) sin(s—¥5)

- V gin ¢ sin (8 —a) .' ___sing '
8in (8 — ) sin (s —¢) sin (s—a)

[theor.5, cor.3.

Strike out the common factor 4/sins, and multiply both
numerator and denominator by 4/sin (s —a) sin (s —8) sin (s — ¢);
then tan§(6+y)/tanfa

=[sin (8—5) +sin (s—¢)]/[sin (s —a) —sin 8]
=sin $a cos }(6—c)/—sin §a cos §(b+¢) [II, th.12.
- =-—cos}(b—c)/cos§(b+c); Q.E.D.
and so for the rest.
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§ 10. SIX-PART FORMULA.
DELAMBRE’S FORMULZE.
THEOR. 12. In atriedral angle whose partsare a, b, ¢, a, B, y,
sinda/sinda= Fsing(b—c)/sind(f—-y),
sinda/cos da= xtsin{(b+c)/cos $(B—y),
cos da/sinta= xcos $(b—c)/sint(B+y),
cos 4a/cos a= Fcos $(b+c)/cos 4(B+y),
with like formule if @, a be replaced by &, 8 or by ¢, y:
For *.' sin%a/sin*a=(1+cosa) (1 —cosa)/(1+cosa) (1 —cosa),
and sin*e/sin*a=sin b sin¢/sin B sin y, [law of sines.
. (1—cosa)/(1—cosa)
=(1+cos a) sin b sin ¢/(1 + cos &) sin B sin y
=[(1—cosa)—(1+cosa) sin b sinc]
/[(1—cosa)—(1+cosa) sin B sin ] [prop.
=[1—(cosa@+sin b sin ¢ cos ) —sin & sin c]
/[1~(cos a+sin g sin y cosa)— sin B sin 7]
=[1-cos & cosc—sin b sin c]
/[1—cos B cos y —sin 8 sin y] [law of cos.
=[1-cos(b—c)]/[1—cos(B—y)], [add. theor.
.~ 2sin’4a/2 sin*ta=2sin* §(b—c) /2 sin* (B —¥),
Asinda/sinda= Fsin§(b—c)/sin§(—y). Q.E.D.
So, (1—cosa)/(1+cosa) .
=(1—cos a) sin b sin ¢/(1+cos a) sin B sin y,
and sinja/cosfa= xsin(b+c)/cos}(f—y). Q.E.D.
So, (1+cosa)/(1—cosa)
=(1+cos ) sin b sin ¢/(1 —cos a) sin £ sin y,
and cosja/sinfa= tcos}(d—c)/sin{(B+y). QE.D.
So, (1+cosa)/(1+cosa)
=(1-cos @) sin b sin ¢/(1—cos @) sin 8 sin y,
and cosja/cosfa= Fcos§(b+c)/cosz(f+y). QE.D.

’
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Notk 1. For any triangle the second members of these equa-
tions must all have their upper signs or all their lower signs,
since Napier’s analogies may be got from Delambre’s formule
by division, and must accord with them :

first Nap. anal. from third Del. form. by fourth Del. form.,
second Nap. anal. from first Del. form. by second Del. form.,
third Nap. anal. from second Del. form. by fourth Del. form.,
fourth Nap. anal. from first Del. form. by third Del. form.
Cor. Ifa,b,c, a, B, y be all positive and less than two right
angles, and A, B, C be the interior diedrals, then :
sin da/cos A= +sin3(b—c)/sinz(B—c),
sin da/sin $A= +38in 4(b+c)/cos 4(B—c),
cos 3a/cos A= +cos4(b—c)/stn$(B+0C),
cos da/sin $A = +cos 3(b+c)/cos $(B+cC).
For “.* A, B, ¢ are the supplements of a, 3, y,
.sinfa=cosfA.--, siny(f—y)=—sin§(B—0c)--.,
and "." the first members of these equations are positive,
.". the second members are positive.

Note 2. For any triangle, the equations
sin ja/sinja= Fsin §(b — ¢) /sin (B —y),
gin 4b/sin 8= Fsin §(¢c —a)/sin §(y —a),
sin §¢/sin ¥ = Fsin 4(a—b)/siny(a— B),
must be taken all with the upper sign or all with the lower
sign ; and so of the other three groups of like equations.

For . sin§a : sin4a= —sin (b —¢) :sin §(6—y) [up. signs.
=singa —sing(b—c):singa +siny(B—y)
=singa +sing(d—c): sin fa —siny (8- y),
.. co8 3(8 —¢) sin 3(s — &) /sin (o — y) cos §(o — B)
=sin§(s—c) cos 3(s —b)/cos §(o — y) sin §(o — ),
1] .~ tan 3(s—8) cot (s —c) =cot §(o — B) tan (o — y).
So, " singa: cosga=+sin§(d+ec): cosz(B—y), [up. signs.
2] .~ tan 38 cot z(8—a)=cot3(o — B) cot (o —y).
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So, ".-cos}a : singa= +cosz(d—c): sin§(B+y), [up. signs.
3] .~ cot §(s—b) cot §(8—c¢)=tan §0 cot z(o —a).

So, . cosga: cosa= —cos§(b+c): cos§(B+y), [up. signs.
4] ... tan s tan }(s—a)=cot §o cot (o - a).

So, when the lower signs are taken :
5] cot(s—b)tan (s —c)=cot(c— g) tan H(c—y),
6] cots tan}(s—a)=cot(o— M) cot}(c—y),
7] tan§(s—5) tan J(2—c)=tan }o cot }(o —a),
8] cotscot J(s—a)=cot jo cot }(6—a);
and with @, « replaced by 6, 6, e quations 5, 6, 7, 8 become :
9] cot}(s—a) tanj(s—c)=cot (o —a) tan (o —y),
10]  cot s tan§(s8—b)=cot}(o— a) cot (0 —y),
11] tanj(s—a) tan§(s—c)=tan 4o cot §(c —g),
12]  cot 48 cot (s —&) =cot o cot §(o — ),
with like formule if a, « be replaced by ¢, y ;
and . the products of the equations 2, 4, and of 10, 12,
t.e. tan'}s=cot§o cot (o —a) cot (o — @) cot (o —y),
and  cot? §s=cot 4o cot (0 —a) cot $(a— B) cot (6 —y),
are contradictory, and so of other pairs of equations,
*. the upper signs may not be used with the lower signs,
i.e. the upper signs must be used together and the lower
signs together ;
and so for the other three groups of like equations ;

.. with the entire set of twelve equations, the npper signs
must be used together and the lower signs together.

NotE 3. Another proof of Delambre’s formule is as follows :
For sinja-sin§f=4/[sins sin (s—a)/sin b sine
-8in 8 sin (8—5)/sin ¢ sin @]
= xsin 8/sin ¢- 4/ [sin (8 —a) sin (s—5)/sin @ sin d]
‘= xsing/sinc-coszy.
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So, sinja cos §6= xsin (s—a)/sinc-sin }y,
cos fa sin §6= +sin (8 —8)/sin ¢-sin y,
cos ya cos}fB= xsin (8—c¢)/sinc-cos }y.
In these equations the upper signs go together, and the lower
signs go together.
For, multiply together the first two equations,
then sin®ja-sin B= xsins sin (s—a)/sin’c-sin y
= xsin*{a-sin b sin ¢ sin y/sin’c,
. 8in = =sin b sin y/sine,
..8in B/sinb= xsiny/sinc;
and this equation is true only when the sign + is used,

i.e. when the two upper signs are taken in the first two equa-
tions, or the two lower signs;

and so of the other equations.
Add the first and fourth equations,
then cosd(a—B)=[sins+sin (s—c)]/sinc-cos y
=gin }(a+06)/sin}c-cos §y ;
and so for the other formule.
Notk 4. Simon I’Huillier’s formule. If equations 2, 3 of
note 2 be multiplied together, the products give the equation
tan §s cot (s —a) cot §(s—0) cot §(s—c)
=tan o cot (6 —a) cot (o — B) cot (6 —y);
and, by substitution from other equations of the set,
=cot §(o — ) cot (o — y) cot 3(s—5) cot §(s—¢),
=cot §(o—y) cot §(o — a) cot §(s—¢) cot (s —a),
=cot §(0 — a) cot $(o — B) cot (s —a) cot $(s—&),
=tanjo cot }(o — a) tan s cot §(s—a),
=tan}o cot §(o — B) tan §s cot §(s—5),
=tanjo cot {(o—y)tan s cot §(s—¢),
. tan o tan {s=cot (o —a) cot (s —a),
=cot (o — B) cot (s —b),
=cot §(o—y) cot 3(s—c).
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§11. THE RIGHT TRIEDRAL.
THEOR. 13. Ina triedral angle whose parts are a,b,c, a, 8, y,
if y be a right diedral, then : '
sina=sin ¢ stin a= —tanb cot S,
stnb=sin ¢ 8in f= —tana cot a,
cosc =cos & cos b =cot a cot 3,
cosa=—cosa sinff=—tanb cotc,
co8 8= —cosbh stna= —tan a cotc.
For - y is a right diedral,
~.siny=1, cosy=0;
and °." sin a/sin @=sin /sin B =sin ¢/sin p, [theor. 6.
s.sina/sin a=sine,
and sin §/sin S=sinc.
So, ‘" cos¢ =cosa cosb—sina sin b cosy, [theor. 5.
s.cos¢ =cosa cosb.
So, .’ cos a=cos £ cos y —sin @ sin y cosa, [theor. 5.
.. cos a= —sin § cosa.
So, “." cos B=cos y cos & —sin y sin a cos b, [theor. 5.
.. cos = —sgin a cosd.
So, “."cos y=cosa cos §—sin a sin £ cosec, [theor. 5.
.. cos ¢ =cot a cot B.
The four formuls below come from the six proved above:
cosa= —sin B cos@= —sin b/sin ¢- cos ¢/cos b= —tanbcote,
cosB= —sin a cos b= —sin a/sin ¢-cos ¢/cosa= —tanacote,
sin @=sin ¢ 8in a= —s8in d/sin B.cos §/cos b= —tan b cot B,
8in b=sin ¢ sin f= —sina/sin a-cos'a/cosa= —tana cot a.
In the figures below, the great circle ¢ may stand for the
earth’s equator, as it would be if the earth revolved from east
to west half the time; the letters N, s stand for the north and
south poles, the great circle & for a meridian, and the great

circle ¢ for any other great circle cutting the equator and the
meridian. The angle y is always a positive right angle. The
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triangles appear as seen from the sun when fifteen degrees
north of the equator. The invisible parts of the arcs are
shown by the broken lines,

CoRr. Ifa, b, ¢, a, B, y be all positive and less than two right
angles, y a right diedral, and A, B, c the interior diedrals ;

then sina=sinc sinA=tan b cotB,
stnb=sincsinB=tana cot A,
€08 ¢=cos a cos b=cot A cotB,
cos A=cosa sin B=tan b cotc,
€08 B=~eh oim A = fan a cof c.
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NAPIER’S RULES.

By an ingenious device of Lord Napier these ten formulae

are remembered by two simple rules:
Ignore the right angle ; take the two sides, and replace the hy-
potenuse and two oblique angles by their complements ;
of the five parts so found call any one the middle part, the two
lying next (t adjacent parts, and theothers opposite parts;
then : sin mid-part=prod ten adja parts,
8tn mid-part =prod cos oppo parts.

If the three parts considered lie together, that which lies
between the other two is mid-part and the other two are adja-
cent parts ; if two lie together and the third apart from them,
the third one is mid-part and the other two are opposite parts.

E.g.1et 0-aBc be an ideal triedral right angled at ¢

then, of the three parts a, &, co-¢, co-c is mid-part, @, b are
opposite parts,

and cosc=cosa cosb.

‘ So, of the parts co-A, co-B, co-¢, co-¢ is mid-part, co-A, co-B

are adjacent parts,

and cosc=cot A cot B.

So, of the three parts co-A, co-B, @, co-A is mid-part, co-B, @
are opposite parts,

and cos A=sin B cosa.
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§12. THE IDEAL TRIEDRAL.

A triedral whose face angles and diedrals are all positive and
less than two right angles is an ideal {riedral. Two parts of
such a triedral are of the same species if they be both acute,
both right, or both obtuse.

It has been shown in geometry that in an ideal triedral :

1. The sum of the three face angles lies between nanght and
four right angles.

2. The sum of the three interior diedrals lies between two
right angles and six right angles.

8. Each face angle is less than the sum of the other two face
angles, and so of the exterior diedrals.

4. Each interior diedral is greater than the difference be-
tween two right angles and the sum of the other two interior
diedrals. :

5. Of two unequal face angles the greater lies opposite the
greater interior diedral, and so opposite the less exterior die-
dral, and conversely.

6. If two face angles be equal, so are the opposite diedrals
(both exterior and interior), and conversely.

7. A plane through the vertical edge of an isosceles triangle
perpendicular to the opposite face, bisects the interior vertical
diedral and the opposite face angle.

Certain other facts relating to ideal triedrals are manifest,
and still others appear by examining formuls already proved.

8. The sine of every part is positive. )
9. Every half part is positive and acute, and all its ratios are
positive.
10. The half sum of two parts is positive and less than two
right angles.

11. The half difference of two parts is acute and its cosine
is positive.
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THE IDEAL TRIANGLE.

THEOR. 14. In an ideal triangle, that one of two unequal
sides which is nearer right lies opposite the angle whick is nearer
right, and conversely.

For - that angle which lies nearest to a right angle has the
greatest sine, '

and °." sin ¢/sin A =sin §/sin B=sin ¢/sin ¢,
. if sine > sind, then also sinA > sinB; and so of
the others.

THEOR. 15. In an ideal triangle, a side and its opposite in-
terior angle are of the same species, if another side be as near
right as the given side, or if another angle be as near right as
the given angle. '

For let the side ¢ be as near right as the given side a ;
then'."cosc % cosa, and cosbd<l,
..cosb cosc<cosa, or cosb cosc=cosa=0,

..cosa, cosa—cosb cosc, are positive, negative, or zero
together ;

and . cos A = (cos @ —cos b cos ¢)/sin b sin c,

and sind, sinc are positive,
.cos@, cosA are positive, negative, or zero together,
.. a, A are both acute, both obtuse, or both right. Q.E.D.

So, let the angle ¢ be as near right as the angle 4 ;
then'." cos a=(cos A +cos B cos C)/sin B sin C,
and COo8A, COBA+COSB cosC are positive,negative, or zero
" together, [as above.
s.cosa, cosA are positive, negative, or zero together,
".'.a, A are both acute, both obtuse, or both right. Q.E.D.

Cogr. A side and the opposite exterior angle may be both right ;
but if one of them be acute the other is obtuse, if another side be
as near right as a given side, or another angle be as near right
as a given angle.
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THEOR. 16. In an tdeal triangle the half-sum of two sides
and the half-suin of their opposite interior angles are of the
same species.

For " cos § (5+¢)/cos § (B+C) =cos a/sin §A,
and cosja, sin}a are both positive,

s.cos}(b+c), cosy(B+c) are positive, negative, or
zero together,

S ¥(b+c), $(B+c) are both acute, both obtuse, or
both right. Q.E.D.

CoR. The half-sum of two sides and the half-sum of their
two opposite exterior angles may be both right ; but if one of
them be acute the other is obtuse.

§ 13. IDEAL RIGHT TRIANGLES.

A triangle having two right angles and two right sides is a
biquadrantal triangle.

THEOR. 17. In an ideal right triangle, if another part be-
sides the right angle be right the triangle is biquadrantal.
For let ¢ be the right angle in the triangle aBc;
then-.* cos ¢c=cos ¢ cos &, '

COS A =Co0s @ sin B,
cos B=cos b sin 4,
and sin A, sin B#0, [A, B are not zero nor two right angles,
.. if @ be right, then cos =0,
. cos¢, cos A=0, and ¢, A are both right. Q.E.D.
So, if & be right, then ¢, B are right. Q.E.D.
So, if A be right, then cos A =0,
.. cosa, cosc=0, and a, care both right. Q.E.D.
So, if B be right, then &, ¢ are right. Q.E.D.

So, if ¢ be right, then cos ¢=0,
.. either cos a=0, or cosb=0,
Soa and A or B is right. Q.E.D.
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THEOR. 18. In an ideal right triangle, not biquadrantal,
the hypotenuse is nearer right than either oblique side.
For let ¢ be the right angle in the triangle aBc;
then'.-cosc=cos @ cos b, cosa, cosb<l,
..cosc<cosa, cCoOSc< cosb,
.". ¢ is nearer right than a or .

THEOR. 19. In an ideal right triangle, not biquadrantal,
an oblique angle is nearer right than its opposite side.

For let ¢ be the right angle in the triangle ABc ;

then'.- cosA=cosa ginB, and sinB <1, [Bnot right.
;. COBA < cosa,
.. A is nearer right than a. Q.E.D.

THEOR. 20. In an ideal right triangle, an oblique angle and
its opposite side are of the same species.
For let ¢ be the right angle in the triangle ABc;
then'.cosA=cosa sinB, and sinB is positive,
..Co8A, cosa are positive, negative, or zero together,
.. A, a are both acute, both obtuse, or both right. q.x.D.

THEOR. 21. In an ideal right triangle, if the hypotenuse
be acute the two oblique sides are of the same species, and so are
the two obligue angles ; but they are of opposite species if the
hypotenuse be obtuse.

For let ¢ be the right angle in the triangle aBc

then".: cosc=cosa cos b=cot A cot B,

and cosc is positive if ¢ be acute,
-.cosa@, cosb are both positive or both negative, and so
~ are cotA, cotB;
.. a, b are both acute or both obtuse, and so are A, B.

So, "."cosec is negative if ¢ be obtuse,
.. cos a, cos b are of opposite signs, and so are cot A, cot .
~. @, b are of opposite species, and so are A, B.
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_ QUESTIONS.
. sin® ¢ =sin*}a cos' b+ cos’ }a sin® 4.
tan® ja=tan  (c+0) tan § (c—¥d).
tan?® }A =sin (¢ —b)/sin (¢ +b).
tan A =sin (c—¥5)/sin @ cos b=sin @ cos b/sin (c+b).
sin (a —b)=sina tan §A —sin b tan }B.
tan*ja=tan §(B+A—R)/tan(B—A+R). [Ra rt. ang.
tan®}¢c = —cos (A +B)/cos (A —B).

® P

2o e

§ 14. SOLUTION OF IDEAL RIGHT TRIANGLES.

ProB. 2. To SOLVE AN IDEAL RIGHT TRIANGLE, GIVEN TWO
PARTS BESIDES THE RIGHT ANGLE.

Out of the formulm of theor. 13, cor. select those which involve
the two given parts and one of the parts sought, and solve
these three equations for the three parts sought.

CHECK : Substitute the three computed parts in that formule
which tnvolves them all, and see if they give an identity.

Or, better, following Napier’s rules :

Take each of the two given parts in turn for middle part, and
apply that formula which brings in the other given part;

take the remaining part for middle part, and apply that for-
mula which brings in both of the parts just found ;

solve the three equations so found for the parts sought.

CHECK : Make the part last found the middle part, and apply
that formula which brings in both the given paris.

The check is defective in this, that it tests the logarithms,
but not the angles got from these logarithms, ¢.e. not the final
results : more perfect checks are got from any of the general
formule which involve the three computed parts and one or
more of the given parts.

The check is applied to the sine of the part last found ; if the
two values got for this sine, natural or logarithmic, differ by
not more than three units in the last decimal place, the work
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is probably right, since the defects of the tables permit this dis-
crepancy in the two results : if such discrepancy exist, the mean
of the two values may be used.

These rules involve only the interior angles : for the general
solution of the right triangle the formule of theor.13 are
available.

There are six cases.

(2) Given a, b, the two sides about the right angle c :
then'."sina=tan b cot B, .. cot B=sina cot b,
sind=tana cot A, .. cot A=sind cot a,
cosc=cotA cot B; - check: cos c=cosa cosb.
One triangle is always possible and but one : for the species

of A, B, ¢ is shown by the algebraic signs of the cotangents or
cosines that are used, or by theors. 20, 21.

Geometrically. With the given arcs a, 5 at right angles, their
extremities can be joined by a positive great arc, always in one
way and in but one way.

(6) Given c, a, the hypotenuse and one side:
then cosc=cosa cosb, .. cos b=cos ¢/cos a,
sin @ =sin ¢ 8in A, - 8in A=sin q/sin ¢,
cosB=cosb sin A; check: cos B=tana cotec.

A ‘triangle is possible only when ¢ is nearer right than a, or
when ¢, a are both right. .

The species of 4, B is shown by the sign of cos 5, cos B, and
A is of the same species as a. .

If ¢, @ be both right, then cos &, cos B are indeterminate, 4,
B are equal, and A is right.

Geometrically. Ou a directed great circle & take any point
c: through ¢ draw a great circle @ perpendicular to &, and
take B a point on @ such that Bc is positive and equal to the
given arc a ; with B as pole, and anarc-radius equal to the given
arc ¢, draw a small circle cutting the great circle & in two
points ; take A one of these points such that ca is positive:
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then the triangle ABc is the triangle sought, and there is but
one such triangle.

If the arc ¢ be not nearer right than the arc a, the small
circle is wholly within or wholly without the great circle 4 and
there is no triangle.

(c) Given A, b, an obligue angle and the adjacent side :
then sind =tana cota, .tana=sinb tan A,
cos A=tan 4 cote, .. cot ¢ =cos A cot b,
cos B=tana cotc; check: cosB=cos b sin A.

One triangle is always possible and but one. The species of
the computed parts are shown by the signs of the tangent, co-
tangent, and cosine that are used, or by theors. 20, 21.

Geometrically. On a directed great circle §, take ¢, A two
points such that the arc ca is positive and equal to the given
arc B; at ¢ draw the directed great circle a, perpendicular to
the circle b, and at A draw the directed great circle ¢ making
an angle with the circle 4 equal to a, the supplement of the
given angle A, and meeting the great circle g in two points ;
take B one of these points such that Bc, ca are positive arcs :
then the triangle ABc is the triangle sought, and there is but
one triangle.

(d) Given B, b, an oblique and its opposite side :
then cosB=cosb sin 4, .. 8in A =cos B/cos b,
sind =sin ¢ sin B, .. 8in¢ =sin §/sin B,
sing =sinAsinc; check: sina =tanb cot B.
If B, b be not of the same species, no triangle is possible, for
then sin A is negative.
If b be nearer right than B, no triangle is possible, for then
sin A >1, which is impossible.
If B, & be equal but not right, the triangle is biquadrantal,
for then sin A, sina, sinc are all 1, and 4, a, ¢ are all right.

If B, b be both right, the triangle is biquadrantal, for then
¢ also is right, and A, g are indeterminate.
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If B be nearer right than & and of the same species, there
are two triangles.
For ' A, a, c are all found from their sines,
and sin A, sin @, sin ¢ are all positive,

.. to each of these sines correspond two possible angles,
supplementary to each other, both positive and less
than two right angles.

But A, @ must be of the same species;
and if ¢ be acute, A, @ are of the same species with B, &.

So, if ¢ be obtuse, A, a are of species opposite to that of B, b,
.. two triangles, and but two, are possible.
Geometrically. Let BDB', B'EB be half circles forming lines
whose angle is the given angle B of the triangle ; draw an arc
ca normal to BDB' and equal to the given arc & ; with its initial
point ¢ sliding over BDB' push the arc-normal ca to the right
and left till the terminal point A rests on the circle B'EB ;

then if B be acute and b <B, two triangles A'BC’, A"BC"';

if =B, one triangle, biquadrantal ; if 4> B, no triangle.
So, if B be obtuse and 4> B, two triangles are formed ;

if 5=B3, one triangle, biquadrantal ; if #<B, no triangle.

(e) Qiven’c, A, the hypotenuse and an oblique angle :

then cosc=cot A cotB, ..cot B=cosc tan A,

cos A=tan b cotc, c.tanbd=tanc cosa,

gsing =tand cotB; check: sin a=sinec sin A.

One triangle is always possible and but one, for the species
of b, B is shown by the sign of the tangent and cotangent, and
@, A are of the same species.

Geometrically. Through a point A on a great circle 4, draw
the great circle ¢, making with the great circle 6 the given angle
A ; lay off AB positive and equal to the given arc ¢ ; from B
draw the great circle @ perpendicular to the circle  and meet-
ing it in ¢ ; then is the triangle ABc the triangle sought, and
this triangle can be drawn in but one way.
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(f) Given A, B the two oblique angles :
then cosA=cosa sinB, .. CO8A=CO8A/8in B,
cosB=cos b sin A, .. co8 b=cos B/sina,
cosc =cosa cosd; check: cos c=cot A-cotB.
The species of the parts sought is shown by the signs of the

cosines ; but the solution is possible only when cosa < sinB
and cosB< sina,

i.e. when A is nearer right than co-B, and B than co-a.

Geometrically. Let AD, A'E be great circles whose angle is
the given angle A, and draw great arcs cB, ¢'B, ¢"B",. -+, nor-
mal to the arc ApA’; then the angles cBA vary from R—A to
R+ A, and one of them is the given angle B, if B be nearer right
than co-A, and but one.

QUADRANTAL TRIANGLES.
Find the polar of the given triangle: it is a right triangle ;
solve this triangle and take the supplements of the parts thus
found for the parts sought tn the given ‘triangle.

A biquadrantal triangle is indeterminate unless either the
base or the vertical angle be given.

ISOSCELES TRIANGLES.

Draw an arc from the vertex to the middle of the base, thereby
dividing the given triangle into two equal right triangles ;

solve one of these triangles.

If only the base and the vertical angle be given, there are
two triangles, one triangle, or none, according as the base is
less than, equal to, or greater than the vertical angle ; if only
the two equal sides or the two equal angles be given, there is
an infinite number of triangles ; otherwise, subject to the con-
ditions just found (3, f), there is one triangle, and but one.

OBLIQUE TRIANGLES.

In most cases a perpendicular may fall from a vertex of an
oblique triangle to the opposite side in such manner that one
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of the right triangles thus formed contuains two of the three
known parts, and the other right triangle contuins one of them.

Solve these right triangles in order and so combine the parts as
to find the parts sought in the given triangle.

The solution. of right triangles may take this form :
Given a=172°, 5=125°, ¢=90° then:

cot A=cota sinb, cot B=sin a cot b,
9.511776 9.978206
9.913365 9.845227
9.425141 9.823433 neg.
A=T75°5"45". B=123°39'40". [theor. 20.
cos ¢ =cot A cot B, check: cosc=cosa cosb.
9.425141 9.489982
9.823433 9.758591
9.248574 neg. 9.248573 neg.
¢=100°12'34". [theor.21.,
QUESTIONS,

Solve these right triangles, given ¢, a right angle, and :
1. @, 116° b, 16°.  [97°39'24", 17°41' 40", 114°55' 20",
2. ¢, 140°; a, 20°.  [32°8'48". 115° 42'24", 144°36'29".
3. A, 80°10'; 3, 155°.[67°4R' 0", 153°15" 5", 110°6' 54".
4. A,100°% @, 112°, [27°36'59", 109° 41’ 49", 25°52' 33",
or 152°23'1", 70°18' 11", 154° 7" 27",
5. ¢, 120°; A, 120°.  [131°24'34", 40°53'36", 49° ¢’ 24".
6. 4,60°47; B, 57°16'. [54°31' 52", 51°43'1", 68°55' 50",
7. ¢, 140°; a, 140°. 8. ¢, 120°; A, 90°.
Solve these quadrantal triangles, given :
9. A, 80° a, 90°; &, 37°. 10. B, 50°; &, 130°; ¢, 90°.
Solve these isosceles triangles, given :
11. a, 70°; &, 70°; 4, 30°. [157°39' 34", 134° 24'30",
12. a, 30°; A, 70°; B, 70°
13. a, 119°;- 5, 119°; c, 85°. [118°57'11", 72°26' 22",
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§15. SOLUTION OF IDEAL OBLIQUE TRIANGLES.

ProB. 3. T0 SOLVE AN IDEAL OBLIQUE TRIANGLE, GIVEN
ANY THREE PARTS.

Apply such of the formulm of theor.5 cor.4, theor.6 cor., theor.
11 cor., as serve to express the three parts sought in terms
of known parts.

Where possible the computer will choose his formule so as to
avoid angles near the ends of a quarter.
CHECK: form an equation that involves the three computed parts
and such of the given parts as may be necessary.

If the equation so formed be a true equation the parts have
probably been computed correctly.

Delambre’s formule are useful as checks, and so are the for-
mulae shown in the questions in § 13.

In the check the parts must be involved by different ratios,
or in different combinations, from those used in the solution.

Nore. These rules involve only the interior angles : for the
general solution of the oblique triangle, the formule of theors.
5, 6, 11 and their corollaries are available.

There are six cases :

© (a) Given b, ¢, A, two sides and the included angle :
then tan$(B+c)=cota-cos}(d—c)/cos}(b+e¢),
tan $(B—c)=cot A -sin §(b—¢)/sin §(d+¢),
B=§(B+C)+4(B—0), o=4(B+0)—}(B-0),
tan ya =tan §(5+c¢)- cos §(B+C)/cos (B —c).
Check : the law of sines or one of Delambre’s formule.

There is always one triangle and but one.

For .- whatever the values of b, ¢, A, the parts given,
tan §(B+c), tan}(B—c), tan4a arealwayspossible,

and the species of }(B+¢), 4(B—c), §a areshown by the
signs of their tangents,

.. B, C, a are always possible, and they have single values.



3,§15.] SOLUTION OF IDEAL OBLIQUE TRIANGLES. ' 157

Geometrically. Lay off the arc cA equal to the given arcé ;
at A turn by the angle a, the supplement of A, and lay off the
arc AB equal to the given arc ¢; join Bc: the triangle ABC is
the triangle sought, und with the data there is always one and
but one such triangle.

(6) Given B, c, a, two angles and their common side:
then tan4(b+c)=tanja-cosj(B—c)/cos(B+c),

tan §(0—c)=tan ga-sin $(B—c)/sin §(B+c),
b=4(b+A+4(b—0), c=Hb+c)—3(b—0),
cot A =tan §(B+c)-cos§(d+c¢)/cos F(b~c).
Check : the law of sines, or one of Delambre’s formula.
There is always one triangle and but one.
For - whatever the values of B, ¢, @, the parts given,
tan §(6+c), tan(b—c), tan A arealways possible,
and the speciez of }(6+¢), #(6—c), 4Aa are shown by
the sign of their tangents,
.. b, ¢, A are always possible, and they have single values.

Geometrically. At any point B, on an indefinite arc AB, turn
by the angle S, the supplement of B, and lay off the arc Bc equal
to the given arc @ ; at ¢ turn by the angle y, the supplement
of ¢, and draw an arc cutting AB in A : the triangle ABc is the
triangle sought, and with the data there is always one and but
one such triangle.

Nore. This triangle may be solved under case (a), using the
polar triangle whose parts &', ¢, A’ are supplementary to B, ¢, a,
and the computed parts 8', ¢’, a/, to b, ¢, A, the parts sought.

" (¢) @iven b, c, B, two sides and an angle opposite oneof them :
then sinc=sin¢-sinB/sind,

cot ja=tan } (B+cC)cos (b+c)/cos§ (b—c),

tan Ja=tan } (6 +c) cos } (B+¢)/cos § (B—c).
Check : one of Delambre’s formule.

If &, ¢, B be all right, the triangle is biquadrantal, and A, a
are indeterminate and equal.

.
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If sinc¢sinB >sind, then sinc> 1, which is impossible,
and there is no triangle. .

If sincsinB=sind, then sinc=1, c is right,and there
is one (a right) triangle if 5, B be of the same species, but no
triangle if they be of opposite species.

If sincsinB <sind, then sinc <1, and ¢ may be either
of two supplementary angles ; but these angles must be taken
subject tothelaw, the greateranglelies opposite the greaterside.

In particular :

If ¢ be nearer rlght than b, there are two trlang]es if &, B be
of the same species, but none if they be of opposite species.

If ¢ be just as near right as , there is one (an isosceles) tri-
angle if b, B be of the same species, but no triangle if they be
of opposite species ; and ¢, ¢ are also of the same species.

If ¢ be less near right than &, there is one triangle and ¢, ¢
are of the same species.
Geometrically. Lay off an arc AB equal to the given side ¢ ;
at B turn by the angle g, the supplement of B, and lay off the
indefinite arc Bc ; with A as pole and an arc-radius equal to &
describe a small circle :
if this small circle neither cuts nor touches the circle Bc, there
is no triangle ;

if it touches the arc Bc at a point ¢, such that Bc is positive
and less than two right angles, there is a right triangle ;

if it cuts the arc Bc at one point ¢, such that Bc is a limited
arc, there is one triangle ;

if it cuts the arc Bc in two points ¢,, ¢,, such that Bc,, Bc, are
both limited arcs, there are two triangles.

(d) Givens,c, b, two angles and a side opposite one of them :
then sin¢=sin c-sind/sin B, :

tan fa=tan 3 (b+¢) cos} (B+¢)/cos§ (B—c),
cot A =tan § (B+c) cos§ (d+c)/cos } (b—c).
Check : one of Delambre’s formule.

If B, ¢, b be all right, the triangle is biquadrantal, and a, A

are indeterminate and equal.
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If sincsind >sinB then sine¢>1, which isimpossible, .
and there is no triangle.

If sincsin d=sin B, then sinc=1, ¢ is right and there
is one (a quadrantal) triangle if B, & be of the same species,
but no triangle if they be of opposite species.

If sincsind <sinB, then sine <1, and ¢ may be either
of two supplementary arcs ; but these arcs must be taken sub-
ject to the law that in an ideal sp..crical triangle the greater
angle lies opposite the greater side. In particular:

If ¢ be nearer right than B, there are two triangles if B, & be
~ of the same species, but none if they be of opposite species.

If ¢ be just as near right as B, there is one (an isosceles) tri-
angle if 4, B be of the same species, but none if they be of op- -
posite species. In this triangle ¢, ¢ are also of the same species.

If ¢ be less near right than B, there is one triangle, and ¢, ¢
are of the same species.

Geometrically. Draw an indefinite arc ; at any point B, turn
by the angle 8, the supplement of B, and draw the indefinite
arc BC ; at any point ¢, turn by the angle y, the supplement of
¢, and draw the arc ca equal to 4 ; let the arc-first drawn slide
along the arc BC, as a lune may slide along one of its bound-
ing circles, without changing the angle B.

If this sliding arc do not pass through the point a, there is
no triangle ; if it touch A, and the angle A be a limited angle,
there is one (a quadrantal) triangle ; if it pass through A twice,
so as to make the two angles 4,, A, both limited angles, there
are two triangles.

(e) Given a, b, c, the three sides : then
tan $A = 4/[sin (s —a) sin (s —d) sin (s —¢) /sin s] /sin (s — a),
tan $B=#/[sin (s—a)sin (s — &) sin (s —¢) /sin s] /sin (s — ),
tan §c =4/ [sin (s—a) sin (s — ) sin (s—¢)/sin 8] /8in (s —c).
Check : one of Delambre’s formule.

Since each of the half anglesis positive and acute, the radical
must be taken positive and there is no ambiguity ; but no tri-
angle is possible unless s, s—a, s—5, s—c be all positive.
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(f) Given A, B, ¢, the three angles :
then tan 4a=4/[sin E/sin (A —E)sin (B—E)sin (¢ —E)]

-gin (A —E),
tan }b = #/[sin E/sin (A —E) sin (B—E) sin (¢ —E)]
-gin (B—E),
tan y¢=4/[sin E/sin (A — E) sin (B--E) sin (c—E)]
-gin (C—E).

Check : one of Delambre’s formuls.

Since each of the half sides is positive and acute, the radicals
must be taken positive and there is no ambiguity ; but no tri-
angle is possible unless E, A—E, B—E, C—E be all positive.

QUESTIONS.

Solve these oblique triangles, given :
1. a, 100°; &, 50°; ¢, 60°.
[138° 15" 45", 31°11' 14", 35° 49’ 58"
2. A, 120° B, 130°; c, 80°.
[144° 10" 2", 148° 48' 46", 41° 44' 15",
3. 5, 98°12'; c, 80° 35'; A, 10° 16",
[149° 32" 51", 30°20'29", 20°22" 7",
4. A, 135°15'; ¢, 50°30'; &, 69° 34", . .
[50° 6’ 16", 120° 41’ 47", 70° 28'9".
5. a, 40°16’; b, 47° 14'; A, 52° 30"
6. a, 120°; &, 70°; A, 130°.
[58° 57 20", 75°36'4", 56°13' 23",
or 165° 23’ 44", 163° 26’ 16", 123° 46’ 37"
7. a, 40°; b, 50°; A, 50°.
[65° 54’ 52", 82° 48’ 42", 56° 21' 24",
or 114° 5’ 8", 22° 16’ 52", 18° 33" 2".
8. A, 132°16'; B, 139° 44'; a, 127° 30..
[136° 8" 16", 114°17' 48", 77° 43" 4".
9. A, 110°; B, 60°; a, 50°.
10. 4, 70°; B, 120°; a, 80°.
[114° 49 26", 65° 48’ 58", 72° 56' 48",
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ProB. 4. To FIND THE AREA OF AN IDEAL TRIANGLE.

-~

It is shown in geometry that the area of an ideal spherical
triangle bears the same ratio to the area of a trirectangular
triangle as the spherical excess bears to a right angle : \
t.e. if ABC be a limited spherical triangle, and if K stand for
the area of the triangle, T for the area of the trirectangular
triangle, and 2E for the spherical excess A +B+c—2R, then

K:T=2E:R and K=T-2E/R.

This area may also be expressed in terms of @, b, ¢, the sides

of the triangle, as follows :

Divide the equation [theor, 12, note 2, form. 4.
tan 8- tan §(s—a) =cot 4o -cot §(0 —a)
by the equation [theor.12, note 2, form. 3.

cot 4(s— D) cot 4(s—¢q) =tan 4o cot (o —a),
then cot'}c=tan4s tan §(8 —a) tan §(s—8) tan4(s—c) ;
and " 2E=(A+B+C)—2R=4R—(a+ S+ y)=4Rr—20,
..3E=R—}0, and tan}E=cotjo,
.. tan? JE=tan §s tan §(3—a) tan }(s—?) tan §(s—¢),
- KE=T-4[tan"'y/tan}s tan§(s —a) tand(s— &) tan(s—c)]
/R.
Manifestly the radical has the positive sign for an ideal tri-
angle, and the angle is the smallest positive angle in the group
of congruent angles shown by the bracket,
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§16. RELATIONS OF PLANE AND SPHERICAL TRIANGLES.

After the definition of the trigonometric ratios and the state-
ment of their relations, all the properties of the right spheri-
cal triangle, and of the plane triangle (oblique and right), may
be derived from those of the oblique spherical triangle. Such
a development of the subject presents the principles of trigo-
nometry in their most general form, and teaches the student
to take these general propositions and, by successive steps, to
draw out and state in their logical order the special proposi-
tions that are included in them. This mutual relation of the
general and the particular not only helps the intellect to grasp
- these propositions, but also helps the memory to retain them.
The order of development is this :
to state and prove the general properties of the oblique spher-
ical triangle, counting it the most general form of the
triangle.

to derive the properties of the right spherical triangle, count-
ing it a special case of the oblique spherical triangle
wherein one angle is a right angle.

to derive the general properties of the oblique plane triangle,
counting it a special case of the spherical triangle
wherein the radius of the sphere has become infinite.

to derive the properties of the right plane triangle, counting
it a special case of the oblique plane triangle wherein
one of the angles is a right angle, or of the right spher-
ical triangle wherein the arcs are straight lines.

The general properties of the plane triangle may be got from
those of the spherical triangles as follows :

If the sides of a spherical triangle subtend very small angles
at the centre of the sphere, the spherical triangle differs but
little from a plane triangle having the same vertices ; and, if
the vertices be fixed in position while the centre of the sphere
recedes further and further away, and the radii grow longer
and longer, then the bounding arcs grow straighter, the spher-
ical triangle approaches closer to the plane triangle having the
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same vertices, the small angles at the centre of the sphere sub-
tended by the sides of the triangle are proportional to those
sides, and the sum of the three angles of the triangle is a little
greater than, but approaches, two right angles.

The plane triangle that has the same vertices is the limit to
which the spherical triangle approaches when the radius is in-
finite, and if in the formule for spherical triangles the func-
tions of thé sides be expressed in terms of their subtended
angles, and only those terms be retained whose limiting ratios
are finite, 7.e. those that are of the same lowest order of infini-
. tesimal, the resulting formula correspond to the formuls for
plane triangles.

In detail : replace sina, cosa, tana --. by

a—a*/3!+.., 1—-a*'/2!+---, a+a’/3+.--;
omit all terms except those of lowest order, and replace those
infinitesimals by the corresponding sides of the plane triangle.

(a) The terms of lowest degree of the first order :
ReplaceAsin a,tana, 2sin4a --- by a; cosa byl; andsoon;
then'. sina=sin¢ sin A=tan b cot B, ‘
S.a=csinA=bcotB;

and . cos A=cosa sin B=tan  cote,
c.cosa=1-sinB=0d/c;

and °. sinae/sin d=sin A/sin B,
. a/b=s8inA/sinB;

and -." sin $A = 4/[sin (s—8) sin (s —¢)/sin b sin c],
s 8in $a=[(s—0) (s—¢)/bc] ;

and ' cos 4A=4/[sin s sin (s —a)/sin b sin ¢],
socos3a =/ [s(s—a)/bc] ;

and " tan§a = 4/[sin (s—&) sin (s—c¢)/sin ¢ sin (s—a)],
stanta=#[(8—8) (s—¢)/s(s—a)];

and ' sin (A —B)/cos §c=sin §(a —b)/sin §e,
~.sin4(A—B)/cos jc=(a—-b)/c;
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and ‘.’ cos (A —B)/sin $c=sin 4(a +b)/sin 4c,
s.cos$(A—B)/sindc=(a+d)/c;
and -. tan4(A —B)/cot 4 c=sin éia—b)/sin #(a+D),
 ..tan4(A—B)/cot3c=(a—8)/(a+bd);
and ‘.- tan §(a +&)/tan 4¢=cos 3(a —B)/cos }(A +B),
.~ (a+0)/c=cos §(A—B)/cos4(A+B);
and -’ tan (¢ —b)/tan y¢=sin $(a — B) /sin §(A + B),
.. (a—b)/c=sin}(a —-B)/sin }(a +B).
() The terms of lowest degree of the second order :
Replace sinae, tanae, byae; cosa byl-—ja*; and so on.
E.g. the formula cosc=cosa cosd becomes
1-3+.--=(1-3a*+---)(1-38+--+)
=1—ja'— b+ -+
~.a'+8'=c* £ terms of higher degree, whose ratios to
a', b*, =0 when a, b, c=0,
sat+bt=c.
So, the formula cosa=cosd cosc+sinbdsinc cosa gives
a'="b"+c*—2bc cos A.
QUESTIONS.
1. Show that, for a plane right triangle, of exs. 1-7, § 13,
exs. 1, 2 reduce to a'+8'=c;
exs. 3,4, t0 tanga=w[(c—0)/(c+b)]=a/(c+8);
ex.5,to a—b=a tan fo—5 tan §B;
exs. 6,7, to A+B=90°

2. Show that, for a plane triangle, of exs. 1-12, § 7,
ex. 1 reduces to ex. 4, ITI §2; :
ex.3,toex. 7, ITI §2;
ex.5,toex. 5, IIT §2;
ex. 7, to (8—¢)/(s—a)=tan § A/tan }c.

3. Show what the other examples of § 7 reduce to.
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§17. LEGENDRE'S THEOREM.

THEOR. 22. If ABC be any spherical triangle whose sides are
very small as to the radius of the sphere, and if A'B'cC’ be a plane
triangle whose sides o', b'y ¢’ are equal in absolute length to the
sides a, b, ¢ of the spherical triangle ; then each angle A, B, C
exceeds the corresponding angle A', B', C' by one-third of the
spherical excess of the triangle ABC.

For, replace sind, sine by b—}8*+:--,¢—4c*+---, and
cosa, cosd, cosc by 1—3a*+-.-, 1-38+---, 1—4c*+--+;
then'. the formula cosa=cosbd cosc+sind sinc cosA gives
be (cos A’ —cos A) [cos A'=(6*+c*—a*)/R0bc.
=15 (a®0® + 8*c* + *a*) — gig (a* + b* + ¢*) + terms  whose
ratios to these terms =0, when a, b, ¢ = 0,
and so for ca (cos B'—cos B), ab (cos ¢'—cos ), [sym.
. be (cos A'—cos A) =ca (cos B'—cos B) =ab cos ¢’ —cos C).
But ".cos A’ —cos A=2sin(a—A")sing(a+4")
=(A—4")sin A,
and so for cos B'—cos B, cosc'—cosC; [sym.
be(A—4A')sinA'= ca (B—B') sin B'=ab (c—C')sinc;
and ' sin A’, sinB’, sinc’' are proportional to a, b, ¢,
S A—A'=B-B'=0-cx}[(A+B+C)—(a"+B'+")].

QUESTIONS.

1. Triangles upon the earth’s surface are regarded as spheri-
cal triangles, and the earth’s mean radius is 3956 miles. If
the angles A, B be 65°, 60° and the side ¢ be 100 miles, find the
sides @, & in degrees and in miles; find the angle ¢ and the
spherical excess ; find the area of the triangle in square miles ;
find the number of square miles that correspond to 1" of
spherical excess.

2. In a geodetic survey the angles A, B, ¢ are 48° 45/, 30°,
101° 15’ 12", and the side ¢ is 70 miles : find the angles of the
plane triangle whose sides equal a, &, ¢, of the spherical tri-
angle, and thence find the lengths of a, &. [Leg. th.
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§ 18. THE GENERAL SPHERICAL TRIANGLE.

On page 116 it was shown that three lines, A'A, B'B, ¢'C,
which meet in a point o, give four pairs of symmetric triedral
angles, in the geometric sense :

0-ABC, 0-A'B'C'; 0-A'BC, 0-AB'C’;
0-AB'Cc, 0-A'BC'; 0-ABC, 0-A'B'C;

and that when the planes of these lines are properly directed,
each triedral gives eight spherical triangles, thus forming eight
groups of eight, each of the sixty-four differing in some way
from every other one of them.

So, it was shown on page 124 that the law of cosines and the
law of sines hold true for all spherical triangles and all trie-
drals, without regard to the signs or magnitudes of their parts ;
and consequently that all the formule derived from these laws
hold true universally.

. In these triangles the circuit is so made that the vertices
are always taken in the order A-B-c-A-B, never in the order
A-C-B-A-C : that order would give sixty-four more triangles.
It remains to show how, starting with one of them, e.g. the
ideal triangle, the other sixty-three triangles may be derived
from it ; and how, in the solution of the general spherical tri-
ngle, the species of the parts may be known.
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THE DEFORMATION OF SPHERICAL TRIANGLES.

Let ABc be an ideal spherical triangle, as shown in the first
figure, with the parts a, §, ¢, a, 8, y named and used
as on page 112 ;

let the plane @ turn upon one of its own diameter, e.g. on B'B
or on C'c, as upon a hinge, till it comes again to pass
through the points B, ¢, but hasits direction reversed, as
in the second figure ;

then, while the arcs d, ¢ are unchanged, the arc a is replaced
by its explement, 27 —a;

and "’ op, the axis of the plane a, is reversed with the plane,

.. the angle op makes with 0qQ, the axis of the plane b, is
made greater or less than before by two right angles,
.. the diedral a'b=y ==, [@' = the reversed plane a.

the diedral ca’= =+ =, and the parts of the new triangle are
Qr—a, b, ¢, a, Lxm, y=xm.

So, if the plane b be reversed, and the planes ¢, a not, the parts
of the triangle so found (third figure) are
a, 27-b, ¢, axm, B, y=xm.

So, if the plane ¢ be reversed, and the planes a, & not, the parts
of the triangle so found (fourth figure) are
a, b, 2m—e¢, axm, fLxm, .

So, if the two planes , ¢ be reversed, and the plane a not, the
parts of the triangle so found (fifth figure) are
a, 2x—b, 27r—e¢, a, Pxm, y=xm.

So, if the two planes ¢, @ be reversed, and the plane 4 not, the
parts of the triangle so found (sixth figure) are
2w—a, b, 2m—c¢, axm, L, yzxm.

So, if the two planes a, b be reversed, and the plane ¢ not, the
parts of the triangle so formed (seventh figure) are
2r—a, 2r—-0b, ¢, axm, Lxm, vy.

So, if the three planes a, b, ¢ be all reversed, the parts of the
triangle so found (eighth figure) are
2r—a, 2m—b, 2m—c, a, B, y.
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Let the line a have its direction reversed and A’ become the
positive end ; _

then the triedral 0-a'Bc gives eight triangles, which may be
got from those of the triedral 0-aBc by noting, that :

with the three planes a, b, ¢ fixed, the diedrals ca, ab, and the
face angle Boc are unchanged,

the diedral ¢ is reversed, being viewed from the other end of «,
the co-line of the two planes b, ¢,

and the face angle coa is replaced by coa’, and AoB by A'oB.

E.g. the parts of the triangle that mates with the ideal triangle
are a, bxm, cxm, —a, LB, y;

and the other seven may be got in like manner.

So, if the line B be reversed, or the line y, there are eight new
triangles analogous with the eight triangles of 0-A'B c.

If the two lines B, ¥ be reversed, and a not;

then the diedral d¢ is unchanged, the diedrals ca, ad are re-
versed, the face angles coa, A0B are replaced by c'oa,
AoB', and B'oC’ is equal to BoC.

E.g. the parts of the triangle that mates with the ideal triangle
are a, bxm, cxm, a, —f, —y;

and the other seven may be got in like manner.

So, if the two lines y, a be reversed, or the two lines a, G,
there are eight new triangles analogous with the eight
triangles of 0-AB'C’,

If the three lines a, B, y be all reversed ;

then, for any one position of the three planes the diedrals are
all replaced by their opposites, and the new face angles
B'oC’, ¢'0A’, A'0B’ are equal to BoC, COA, AOB.

E.g. the parts of the triangle that mates with the ideal triangle
are a, b, ¢, —a, -6, —y.

The parts of thirty-two of these sixty-four triangles are
shown in the table below, and the rest may be written by sym-
metry. In this table the angles are all set down as positive,
the negative angles —a, a—m--. being replaced by their
next greater positive congruents.
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These triangles have all their parts positive and less than
four right angles, and they are called the primary triaxgles
of the three co-pointar lines a, £, y, always naming the lines
in this order. A triangle that has parts negative or greater
than four right angles may be reduced to one of these by add-
ing or subtracting multiples of four right angles.

ABC 2r—a, b, ¢, a, 2r—b, 2m—ec,
a, 7+f, x+y. a, T+, T+y.

a, b, ¢, a, 27—b, ¢, 2m—a, b, 3m—e,

a, B, y. n+a, B, m+y. n+a, B, Ty,
2n—a, 20, 2w—c, . a, b, 2w—ec, 27—a,2w—-b, ¢,
a, B, y. r+a, w+p, y. w+a, w+p, y.
A'B'C 2r—a, b, ¢, a, 2n=b, 2w —e,

r—a, n—pf, n—y. 2wm—a, 71—, T—y.

a, b, ¢, a, 2719, ¢, 2m—a, b, 2r—e,
x—a, 2x—p, 2x—y. n—a,2n—f, x—y. T—a,2n—f, 1—y.

2r—a, 2x—b, 2w—e, a, b, 2m—e, 2r—a, 2m—b, ¢,
r—a, In—p, 2n—y. r—a, °1—B,2n—y. w—a, #—L4,2n—y.

A'BC 2r—a, w+b, w+e, a, 7-=b, m—e,
2r—a, w+f, w+y. Rwm—a, w+f, w+p.

a, w+b, w+e, a, m—b, m+e, 2r—a, w+b, m—c,

2”’_“1 ﬂy Y. T—a, /31 T+y. T—Q, ﬁy T+Y.
r—a, w—b, m—ec, a, w+b, m—e, 2r—a, w—b, w+c,

r—a, B, y. T—a, 7+p, y. T—a, w+f3, 7.

AB'C 2m—a, w+b, m+e, a, n#—b, m—c,
a, T—pf, m—y. a, T—f3, =—y.
a, T+b, m+e, a, m—b, w+e, m—a, m+b, w—c,

a, 2n—f, 2m—y. T+a,2m—f, m—y. T+a,2x—06, m—y.

2r—a, w—-b, m—ec, a, w+b m—e, 2r—a, w—-b, w+e,
a, 2n—pf, 2m—y. T+ax, w—f6,2w—y. T+a, T—f,2nr—y.
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DETERMINATION OF THE SPECIES OF THE PARTS.

These sixty-four triangles have been divided into two classes
called proper triangles and improper triangles.
To the first class belong the ideal triangle . . . 1
and those got from the ideal triangle by reversing :
one side or one angle,
one side and the opposite angle,
two sides and one opposite angle, .
two angles and one opposite side, .
two sides and the two opposite angles,
the three sides and two angles,
the three angles and two sides,
all the sides and angles, .

in all, thirty-two proper triangles. 32

HWWWoDHWS

* The other thirty-two triangles are improper triangles ; and
it will appear that the upper signs of Delambre’s formulse must
be used in solving proper triangles, and the lower signs in solv-
ing improper triangles.

Certain limitations must also be observed, as below :
Let a, b, ¢, a, B, y be the parts of the ideal triangle,
and a', ¥, ¢, a', §, y' the parts of any primary. triangle ;
let s&'=4(a'+b'+¢) and o'=4(a’+p'+y'); then:
1. If the data make a solution possible, the products
. 8in g’ sin (8’ —a') sin (s'—¥') sin (s'—¢'),

gin ¢’sin (¢’ — a') sin (6’ — B') sin (6’ — '), ‘
are both positive, since they are perfect squares. [th. 5, cr.3.

2. §=(s'—a)+(-0)+(s—¢),

o'=(c'"-a)Y+o' - B)+(c'—y").

3. The sixty-four triangles show but ten distinct type-forms,

go far as concerns their sides:

a =a, a'=a, a'=a, a=a, a'=a,

b =0, ¥=2n—b, b'=n+b, b=m+b b=m-0,

¢ =c; =2 —¢; =m+c¢; =m—c; c'=m—c;
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a'=r—a, d=qw—a, a'=2n—a, a=2w—a, a'=2r—a,

b'=b, V=2m-b, ¥=n+b, b=m+b, "=m-—b,

¢'=c; c=2%qwr—c; c'=mw+c; c'=m—¢; c=m—c;

and there are eight possible groups of consistent inequalities:

0 << m, 0<8—a'<n, 0<L8-b<m, 0<s—c'<m;

LB, 0L —a'<n, 0<s=-b<n, 0<8—c'<m.
r<L8' 2w, s —a'<Rm, 0<Ks'—b'<n, 0<s'—c'<m;
7L <L, —w<8 —-a'<0, 0<Ls-b<n, 08 ~c'<m.
r<L8 <R, 0<Ls—a'<n, 7w -b<2m, 0<K<s'—c'<m;
L8R, 0Ls'—a'<m,—1<8-b'<0, 0<s'—c'<m
7<8'<2w, 0<s—a'<n, 0L -b<n, w<s—c'<2m;
782w, 0L —a'<n, 0<Ls-b<m,—nw<s—¢'<O.

" with like type-forms and like groups of the angles.

These inequalities are relied on to determine the species of
the parts sought. There are always two solutions : real and
separate, real and coincident, or imaginary.

E.g. in case (a), given b, ¢, a : the angles §(B+y), ¥(B—y)
are both two valued.

But0<§(B+y) <27, —m<§(B—y)<m;and together they
give only two values each to g8, y hetween 0 and 27 ;

and a is found from the values of 8, y without ambiguity.

So, in (¢) ¥ has two values, and @, @ have single values for
each value of y.

So, (b, d) follow (a, ¢), and (¢, ) show no ambiguity.

GRAPHICAL SOLUTION.

The graphical solution of a primary triangle is made in the
same way as that of the ideal triangle, angles greater than two
right angles being replaced by their next less negative con-
gruents. If any construction be possible, there are two con-
structions, which may be separate or coincident.
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§19. SPHERICAL ASTRONOMY.
THE CELESTIAL SPHERE.

In astronomy the elements of position of a heavenly body are
distance and direction ; in spherical astronomy only one of these
elements, direction, is regarded, and that is usnally referred to
the earth’s centre. For this purpose all stars may be considered
as at the same distance from the earth’s centre upon the sur-
face of a sphere of arbitrary radius called the celestial sphere.

The trace of the plane of the earth’s equator on this sphere
is the celestial equator, whose poles (north and south) are the
traces of the earth’s axis.

The ecliptic is a great circle of the celestial sphere, the sun’s
apparent path in one year due to the motion of the earth around
the sun ; it cuts the equator in two points, the vernal and the
autumnal equinoz, which are passed through by the sun, about
March 20 and September 23. The obliguity of the ecliptic is
the nearly constant angle of 23° 27’ between the planes of the
ecliptic and equator. :

Secondaries to any great circle, or primary, are great circles
cutting it and therefore its parallels at right angles. Second-
aries to the celestial equator are hour-circles or meridians.

To any observer the sensible horizon is a plane touching the
earth’s surface at the point of observation ; and a plane parallel
to this plane through the earth’s centre traces out on the celes-
tial sphere the rational horizon, whose poles, zenith and nadir,
are the traces of a vertical line, and whose secondaries are ver-
tical circles. One of the vertical circles is also an hour-circle,
the observer’s celestial meridian, and passes through his zenith
and nadir, and the north and south poles of the celestial sphere ;
its plane is the same with that of the observer’s terrestrial me-
ridian, and it meets the plane of his sensible horizon in his
meridian line. The vertical circle that is perpendicular to the
meridian is the observer’s prime vertical, and it goes through
the east and west points of his horizon.
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SPHERICAL COORDINATES.

As the position of a point on the earth’s surface is defined by
means of two coordinates (latitude and longitude), the stan-
dards of reference being a convenient great circle (the equator)
and a convenient point on it (the point where it is crossed by
the meridian of Greenwich) ; so, the position of a star at any
instant on the celestial sphere may be defined in either of three
Ways

1. As to the celestial equator :

The declination of a star is its angular distance (north or
south) from the celestial equator measured upon its hour-circle ;
and the arc of the equator intercepted between this circle and
the vernal equinox is the star’s right ascension ; it is reckoned
eastward from the vernal equinox from 0° to 360°. The com-
plement of the declination is the polar distance.

Instead of astar’s right ascension its kour-angle is often used,
in problems that involve diurnal motion, to define its hour-
circle at any instant ; this angle is the angle at the pole between
the observer’s celestial meridian and the star’s hour-circle, and
is counted from the meridian, positive towards the west and
negative towards the east. The right ascension of a fixed star
changes very little, since the vernal equinox is nearly fixed on
the celestial sphere ; the hour-angle changes every moment.

2.0 As to the ecliptic :

The latitude of a star is its angular distance from the ecliptic
measured on a secondary; and the arc of the ecliptic inter-
1inox and this secondary, meas-

ngitude.

ngular distance from the horizon

and the arc of the horizon inter-
1 the south point of the horizon
¢ to the rotation of the celestial
es change every moment.
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RELATIONS BETWEEN ECLIPTIC-COORDINATES AND EQUATOR-
COORDINATES,

Ou the celestial sphere let P be the pole of the equator, Q the
pole of the ecliptic ;

then the great circle through P, @ is the common secondary of
the equator and the ecliptic.

Let v, w be the vernal and the autumnal equinox at quadrantal
distances from 8, T ; :

let PAM be the hour-circle of a star A, and QAN the secondary
to the ecliptic '

then v, MA are the right ascension and declination of A, and
VN, NA are its longitude and latitude.

These four coordinates of any fixed star are subject to only
slight variations in any one year ; they are recorded for the
principal stars in a yearly almanac, with the data for computing
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the variations ; the sun’s declination is recorded for each day or
half day, and may be got for any hour and minute by interpo-
lation.

The spherical angle xvs is the obliquity of the ecliptic, and,
since VX, Vs are quadrants, Xvs is measured by the arc Xxs;
arcs Xs, PQ, YT are each 23°27', and arcs sP, YQ are each 66° 33'.

Equator-coordinates may be converted into ecliptic-coordi-
nates :
when vM, MA are given in the right spherical triangle Mva,
the arc vA and the angle Mva may be found ;

the angle Nva is found by subtracting the obliquity, and the
triangle NvA may be solved for VN, NA ; so conversely.

THE SUN’S ANNUAL MOTION.

The particular case of the sun issimpler : since his apparent
annual path is the ecliptic, his latitude is always zero, and his
right ascension, declination, and longitude are the arc-abscissa,
arc-ordinate, and arc-distance of a given angle, the obliquity ;
his declination increases from 0° at v on March 21 to 23°27’
at s on June 21 (the summer solstice), then decreases to 0° at
w on September 21, and to ~23°27 at T on December 22 (the
winter solstice), then increases to 0° at v ; his right ascension
and longitude are equal at 0°, 90°, 180°, 270°, 360°.

QUESTIONS.

1. The altitude of a circumpolar star at upper ¢ransit across
meridian is 60°, and at lower transit 40°: find the declination
of the star.

2. The vernal equinox culminated (reached its highest point)
at 0810™ 13% and a certain star culminated at 285™10°%: find its
right ascension. :

3. Find the latitude and longitude of a star whose right
ascension is 5® 13™, and declination 60°, .

4. When the sun’s declination is 15°, find his right ascen-
sion and longitude.
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RELATIONS BETWEEN EQUATOR-COORDINATES AND HORIZON-
COORDINATES.—THE ASTRONOMICAL TRIANGLE.

On the celestial sphere let P be the pole of the equator xv,,
and z that of the horizon Ns;

then the great circle through Pz is the celestial meridian, the
common secondary of equator and horizon ;

let zwz'E be the prime vertical perpendicular to both meridian
and horizon and meeting both equator and horizon in
the east and west points.

The celestial sphere appears to make a complete revolution
on its axis PP’ in about 23" 56™ 4* of civil time. This is the
interval between two successive transits of any fixed star, and
is a sidereal day. A sidereal clock shows 0 hours when the
vernal equinox culminates; and the hours are marked from 0
to 24. The sidereal time of a star’s transit gives its exact
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right ascension, which may be converted into angular measure
at the rate of 15° to a sidereal hour, or 1° to 4 mmutes, 15" to
1 minute, 1’ to 4 seconds, and so on.

The hour-circle of the star A coincides with the meridian in
the position PA, bearing due south as seen from o, and the star
has then its greatest altitude :

in the position PA, the star is on the prime vertical and bears
due west ;

in the position PA, the star sets below the horlzon ;

it reaches its greatest depression at a, when its hour-circle
passes over the meridian bearing due north

it rises at A;, reaches the prime vertical at A, bearing due east,
and culminates again at A,.

The spherical triangle zpa, for any position of the star A is .
the astronomical triangle :
its sides za,, PA, are the co-altitude and co-declination of A, ;
the angles ZPa,, PzA, are the supplement of the hour-angle and
of the azimuth of A ;

and the side Pz is the observer’s co-latitude.

For - this co-latitude is the angle between the earth’s axis and
the vertical line at the point of observation,

and the traces of these lines on the celestial sphere are p, z,
.. the arc Pz measures the observer’s co-latitude.

When the latitude is known the relations between the sides
and angles of this triangle give the relations between the star’s
. equator- and horizon- coordinates.

The observer’s latitude may be determined, once for all, by
the astronomical triangle when the declination, the altitude,
and either the azimuth or the hour-angle of a heavenly body
are known for some instunt. If at the time of observation the
body be on the meridian, the hour-angle is zero, and the azi-
muth either zero or 180°; if it be on the prime vertical, the
azimuth is *90° ; if it be on the horizon, the altitude is zero ;
and in all these cases the computation of latitude is simplified.
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THE SUN’S DIURNAL MOTION.—SOLAR TIME.

The sun’s hour-circle ps, coincides with the observer’s merid-
ian at noon ; the hour-angle zps, at any instant measures the
time of observation from noon; the angle zps, measures the
time of sunset.

The greater the declination Xxs,, the greater is the hour-
angle of setting, zps,, the longer the day, and the shorter the
night. The day is longest in the northern hemisphere when
the declination is greatest, June 21, the summer solstice.

z

A

When the declination is zero, the diurnal path 8,8, coincides
with the equator and is bisected by the horizon; the day is
then equal in duration to the night, and hence the term equi-
nox. When the declination is 23° 27’ 8., the day is shortest
in north latitudes, and the night longest (winter solstice).

The interval between two successive transits of the sun over
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the same meridian is an apparent solar day. This interval
varies, from two causes : the obliquity of the ecliptic, and the
variability of the sun’s apparent motion in the ecliptic.

The mean sun is an imaginary body, supposed to move uni-
formly in the equator with the annual period, and with the
average velocity, of the true sun. It culminates at civil or mean
noon, and the constant interval between two successive transits
is a mean solar day. This interval is divided into hours, min-
utes, and seconds. A second of mean solar time is the ordinary
time-unit, and is the same fraction of a mean solar day as a
sidereal second is of a sidereal day. The mean solar time is the
hour-angle of the mean sun, at any instant ; the epparent solar
time is the hour-angle of the true sun. The angle between
the mean and true hour-circles is recorded for each day, in
the almanac, as the equation of time. It varies throughout the
year between 0 and about *16 minutes of time.

The astronomical day begins at mean noon, and the hours
are numbered from 0 to 24.

In what follows, apparent time is used.

QUESTIONS.

1. The meridian altitude of the sun’s centre was 25° 38' 30"
8., and his declination 22° 18’ 14" a.: find the latitude.

2. The meridian altitude of Jupiter was 50° 20’ 8" 8., and
his declination 18°47' 37" N.: find the observer’s latitude.

3. The sun crossed the prime vertical at an altitude of 54°:
find the observer’s latitude and the time of day, the sun’s dec-
lination, got by interpolation for the approximate time of day,
being 18° 30". | :

Here, z8,=36°, ps,=71°30', Pzs,=90°: find zp, zZPS,.

4. Find the observer’s latitude in ex. 1, page 176.

In what latitude will this star just graze the horizon ?

5. If the sun’s declination be 22° 26’ N., and altitude 40° 55'
at 8 p.M., find the observer’s latitude.

In this example, zs,=49°5', ps,=67°34’, zPs,=38 h. =45°,

4 the co-latitude, Pz, is to be found.
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6. In latitude 138° 17" N. the sun’s altitude was 36° 37, his
declination was 22° 10’ s.: find his hour-angle.

7. If the sun’s declination be 17° N., find the time in the
afternoon when he will be due west from a place in Jatitude 51°
N.; and find how far from the west point he will set (his am-
plitude at setting). A

8. If the sun be due west at setting (amplitude zero), find
his declination and the time of year.

9. If the time of sunset be sought on any given day, a quad-
rantal triangle pzs, may be solved for the hour-angle zps,.

If the sun’s declination be 14° 8. and the latitude 42° N., find
the time and amplitude of sunrise and sunset.

10. Find the time of setting in ex. 8.

11. Find the length of the longest day in Ithaca, excluding
twilight, latitude 42° 30’ N.

12. Find the lowest north latitude in which the sun does
not set on the longest day, nor rise on the shortest day.

13. Find the time of sunrise in Boston, latitude 42° 21'N.,
on the shortest day of the year, and the sun’s amplitude.

14. The phenomenon of twilight is due to the reflection and
refraction of some of the sun’s rays toward the observer’s eye
when the direct rays are intercepted : it begins or ends when
the sun is about 18° below the horizon.

How long does twilight last in Boston on the shortest day ?

Given zs,=90°+18° ps,, zp: find zPs,, and subtract the
hour-angle of sunset, zps,.

15. Find the length of the longest day in Ithaca, including
morning and evening twilight.

16. In what latitude does the sun get just 18° below the hori-
zon on the longest day, so that twilight lasts all night ?

Here, N8;=18°, p3;=66°33': find the co-latitude zp.

17. Given the declination of Aldebaran,16°17’' N.: find his
altitude and azimuth to an observer at Boston when the hour-
angle of this star is 3 25™ 12*; and find the hour-angle and am-
plitude at rising and setting.
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§20. NAVIGATION.

When a mariner cannot make celestial observations, he has
recourse to dead-reckoning ; i.e. he computes the position of
his ship from the latitude and longitude of her starting-point
or of the place of last observation, and the records of sailing.
This dead-reckoning is the subject of navigation proper, as
distinguished from nautical astronomy.

The rate of sailing is usually recorded every hour, and is
measgured by the log-line. This is a line wound on a reel and
attached to a small quadrantal piece of board. The quadrant
is loaded on the arc with lead to keep it npright when thrown
into the water and prevent its moving forward toward the ship
while the line is running out. The log-line is divided into
knots, each a hundred-twentieth part of a nautical mile, so
that the number of knots run out in half a minute gives the
ship’s hourly rate in miles.

Bearings at sea are given in poinis and gquarter-points,
counted from each of the eight cardinal points, two points

each way.
N

8

The direction of sailing at any time isshown by the mariner’s
compass.

The reading of the compass is to be corrected for variation,
deviation, and leeway.

The variation is the angle between the magnetic and true

meridians ; it is found, for various places, by astronomical ob-
servations, and laid down on the nautical charts.
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The deviation is the angle of deflection of the needle from
the magnetic meridian, caused by the iron of the ship; it is
found, for a given ship and a given dlrectlon by special ex-
periments.

When there is a side wind, the angle which the ship’s track
makes with her fore-und-aft line is the leeway : it is found, for
a given ship, a given freight, and a given obliquity and velocity
of the wind, by special experiments.

The corrected reading is the course ; it is the angle between
the ship’s true meridian and her true direction of motion. In
what follows, the corrections-are supposed to have been made,
so that the given courses are the true courses. When the
course is kept constant, the ship’s track crosses every meridian
at the same angle ; the path is neither straight nor circular,
but a spiral, the lozodrome or rhuméb-line, that goes round and
round the earth’s surface, coming nearer and nearer to the
pole ; and its length is the distance.

The meridian length between the first and last parallel of
latitude is the difference of latitude made by the ship.

The departure is her easting or westing from her first me-
ridian ; it is measured as follows: if she sail on a parallel of
latitude, the departure is the distance made on the parallel;
if she sail on a loxodrome, the departure for each successive
instant is measured on the parallel she is then crossing, and
the limit of the sum of these infinitesimal departures is the
total departure.

The unit of length is the nautical mile, about 6080 feet, a
gixtieth part of a degree of a great circle of the earth. Sixty
nautical miles are a little more than sixty-nine statute miles.

In what follows the earth is regarded as a perfect sphere,
The error thus introduced is too small to be taken into account
in any calculations whose data are derlved from the log-line
and compass.
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PLANE SAILING.—RELATIONS BETWEEN COURSE, DISTANCE,
DIFFERENCE OF LATITUDE, AND DEPARTURE.

Let AD be the rhumb-line, PA, PD the first and last meridians,
Pm, Pn - .- meridians at equal small intervals ;

P

oM Departure D' o

- @o ‘%‘

S X
y Z\D\
§ 5
3
E
B
A 15° ° 15°

let m'm, n'n, «+- be the small arcs intercepted on successive
parallels ;
then the total departure from A to D is the limit of the sum
m'm+n'n+ - - -, when the meridians are taken very close
together. [df. dep.
. The infinitesimal triangles Amm’, mnn' may be treated as
right plane triangles ; and since the course is constant they are
gimilar. The elements of the motion are thus given by a series
of infinitesimal right plane triangles, the sum of whose hypot-
enuses is the distance, of whose bases is the departure, and
of whose altitudes is the difference of latitude. These three
sums, and the course, have the same relations to each other as
the parts of any one of the elemental triangles ; hence they
may be accurately represented by the parts of a right plane tri-
angle. For this reason, although the sphericity of the earth
is taken into account, the term plane sailing may be applied
to any problem into which the difference of longitude does not
enter ; and the solution is effected by the rules for the solution
of right plane triangles.
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.PARALLEL SAILING.—RELATIONS BETWEEN A DISTANCE SAILED
ON A GIVEN PARALLEL OF LATITUDE AND THE DIFFERENCE
OF LONGITUDE.

THEOR. 23. The length of an arc of a parallel of latitude is
the product of the length of the equatorial arc of the same num-
.ber of degrees by the cosine of the latitude of the parallel.

.For let P be a pole of the earth, c is centre, A, A’ any two points
on the equator, PA, PA’ two meridians cutting a parallel
of latitude in L, L';
let 0 be the centre of the arc LL';

P

then"."arc LL':arc AA'=0L: cA [geom.
=0L/cL=cos ACL=the cosine of the latitude ;
.. LL'=AA'-the cosine of the latitude. Q.E.D.

MIDDLE LATITUDE SAILING. — APPROXIMATE RELATION BE-
TWEEN THE DIFFERENCE OF LONGITUDE AND THE DE-
PARTURE ON A LOXODROME.

The departure from A to D lies, in value, between AB and cp,
and for short distances is nearly the same as the ship makes if
she sail between the same two meridians on the mid-parallel ;
t.e. the parallel whose latitude is half the sum of the latitudes
of A and p. Hence the departure from A to D is taken equal
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to the product of the difference of longitude of A and D by the
cosine of their middle latitude. [theor. 23.

The difference of longitude is thus connected with the other
elements of the ship’s path.

MERCATOR’S PROJECTION.—ACCURATE RELATION BETWEEN
THE DIFFERENCE OF LONGITUDE AND THE DEPARTURE
ON A LOXODROME.

Project the figure of page 184 on a plane surface as follows:

fo} Difference of Longitude D C D
66°80

; s
§ C'  Departure D!
k-] . 51°21'
§ 3 5 i
o3
g .E a° Ty m

Q
g8 »
£ wous— =

A 14°52' B

A60°  45° 0°  15° 0° 15°

. 1. Draw a horizontal line for the equator, and vertical lines
at equal intervals for the meridians.

It follows that the projection m'm of any arc-of a parallel is
equal to the corresponding arc of the equator, and is therefore
multiplied by a projecting factor, the secant of its own latitude.

2. Draw a stralght line cutting the merxdlans at the con-
stant angle given by the course.

It follows that the angles of each small plane triangle re-
main the same; so that while each triangle is enlarged, its
shape is preserved and m'n' or mn' has the same projecting
factor as mm', and n'p’ or np' the same projecting factor as
n'n, and so on.

Each small portion of the meridian in the neighborhood of
any parallel is therefore multiplied by the secant of the lati-
tude of that parallel, and the total length of the projection of
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any given portion of a meridian is the limit of the sum of
these products, when the parts are taken indefinitely small.
In practice it is sufficiently accurate to take each part as two
minutes or nautical miles, and to use as its projecting factor
the secant of the latitude of its middle point.

E.g. the meridian-arc between the equator and latitude 13° 16"
projects into a distance on the chart equal to the sum
2 (sec 1' +sec 8’ +sec 5’ + - - - +sec 795)
in nautical miles, on the assumed scale.

This distance is computed and tabulated as the meridional
part for 13° 16’. In computing such a table, each entry may
be used in succession to find the next one, e.g. the meridional
part for 36’ is found from that for 34' by adding 2sec 35'.

The difference between the meridional parts for two lati-
tudes is their meridional difference of latitude.

In the figure above, Ac is the meridional difference of lati-
tude from A to D, and cp is the difference of longitude ;
and dif. long. /merid. dif. lat. =tan course :

=dep./true dif. lat. [plane sailing.

These equations connect the difference of longitude with
the other elements of the ship’s motion :

E.g. given the latitude and longitude of A, the course and dis-
tance from A to D :

find by plane sailing the departure, the difference of latitude,
and the latitude of D ;

find the meridional difference of latitude by subtracting me-
ridional part for latitude A from that for latitude »;

compute the difference of longitude from the above relations.

NoTe. The student of the calculus will see that the exact
meridional part for latitude A is

JA secA-dLr=log, tan (37 +3A), in radians ;
and this result may be reduced to nautical miles, as follows :
*." log, tan (37 +4A) =log,, tan (45°+ A1) 2.3026,
and 17=3437.75', 2.3026-3437.75="7916,
.. log, tan (45° + 1) =log,, tan (45° +421)- 7916, in miles.
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E.g. if 1=13°15,

then 45°+4A=51°37 30",

the merid. part=0.10134-7916 =802 nautical miles,
and this latitude is enlarged in the ratio 802 : 795.

TRAVERSE SAILING.

ProB. 5. To REDUCE THE RESULT OF SEVERAL SUCCESSIVE
COURSES AND DISTANCES TO A SINGLE COURSE AND DISTANCE.

(a) Tke latitude of the starting-point not given :
Compute each separate difference of latitude and departure by
plane sailing ;
take the algebraic sum of the separate differences of latitude
Jor the value of the direct difference of latitude,

and the algebraic sum of the departures for an approximate
value of the direct departure ;

Jind the direct course and distance by plane sailing.

(8) The latitude of the starting-point given :

Compute the separate differences of latitude by Mercator’s or
middle-latitude sailing ;

take their algebraic sum for the direct difference of latitude,
and so for the differences of longitude ;

from these find the direct departure by Mercator’s or middle-
latitude sailing ;

find the direct course and distance by plane sailing.

"NorE. The first course and distance entered are usually got
by taking a departure, i.e. by taking the bearing and distance
of some object of known latitude and longitude ; the reverse
of these are entered on the log-slate as the first course and dis-
tance.

GREAT CIRCLE SAILING.

The shortest distance between two places is the great circle
arc joining them ; it does not cut all the meridians at the same
angle ; hence to keep on a great circle the ship must contin-
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ually change her course. By means of a chart several places
on the great circle may be determined, and if the ship lay her
course for these on successive rhumb-lines, her path will differ
little from the circular are.

The elements of the great circle track between two given
places are the distance, the first and last courses, and the high-
est Jatitude passed through. These are got from the spherical
triangle whose vertical angle at the pole is the difference of
longitude of the two places, and whose sides are their co-lati-
tudes.

CURRENTS.

In order to ascertain the sef and drift of a current, .e. its
direction and velocity, a boat is taken a short distance from
the ship and kept stationary by letting down a heavy weight;
the log is thrown from the boat, and the direction in which it
is carried, .e. the set of the current, is taken by the boat com-
pass, while the drift is given by the number of knots run off
in half a minute. The effect of the current is considered
equivalent to an independent course.

E.g. if a ship sail 10 knots an hour in a current setting 8.E. 5
miles an hour, what course must she lay to make a place
whose bearing is 8. W, vys.?

C

(a) By construction and measurement.
Take AB pointing s.E., and equal to 5 on any scale ;
take AC pointing 8. W. v S. ;
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with B as centre, and radius Bc equal to 10, cut Ac in the point
¢ ; complete the parallelogram aABcp :

the angle sAD is the course sought.

() By computation.
In the triangle ABc, the sides AB, Bc and the angle BAC being

known, compute the angle Bca, and thence the course
SAD.

TACKING.

A ship is on the starboard tack when the wind is on her
right, on the port fack when the wind is on her left ; she is _
close-hauled on either tack when she sails as nearly as possible
" toward the point whence the wind blows. '

If when close-hauled she find her destination lying between
her path and the wind, then she cannot reach it on this single
tack ; but she may continue till the angle that the direction of
her destination makes with the wind is just equal to her angle
of close-haul, and then run in close-hauled on the other tack.

E.g. if a ship can sail within 6 points of the wind on the port
tack, and within 5} points on the starboard tack,
find her course and distance on each tack to reach, in the short-
est time, a point 15 miles N.w., with the wind due west:
(@) By construction and measurement.
Take ac pointing N, w., and equal to 15 on any scale;
for the port tack draw AB 6 points to the right of the wind ;
for the starboard tack draw AD 5§ pointsto theleft of the wind ;
from the point ¢ draw cB parallel to pa ;
measure AB and BC for the distances on each tack.
(0) By computation.
In the triangle ABc, Ac=15, A=6-—4=2 points,
B=8—6+8_5;=4} points, c=5}+4=9} points,
check: A+B+C=16 points; compute AB, BC.
The answer is the same whichever tack be taken first.
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Note. The surface of the earth is supposed to be flat within
the limits of these problems. They come usually under case
() in compound-course sailing.

QUESTIONS.

1. A ship sails due west 117 miles from a point in lat. 38° x.,
long. 16°E.: find the longitude reached. [13°31'30" E.
2. In what latitude is a degree of longitude half as long as
at the equator ? B
3. Sails. E. 67 miles from New York light, lat. 40°28'N.,
long. 74°8' w.: by middle-latitude sailing find the latitude and
longitude of the point reached. [39°40'36" N., 73°6' 6" W.
4. Find the course and distance from Montauk Point,41°4'N.,
72° w., to Martha’s Vineyard, 41°17'N., 70° 48’ w.
N. 76°30' 40" E., 55.73 miles by middle-latitude sailing
N. 76°43' E., 56.58 miles by Mercator’s sailing.

5. A ship sails froma point 14° 45’ N., 17° 33’ w., on a course
8.28°7'30" w., till she reaches longitude 29°26'w. : find by
Mercator the distance sailed and the latitude.

' ' [1500 miles, 7° 18's.

6. From a point in latitude 50°10’s. a ship sails 8.67° 30" E.
till her departure is 957 miles : find by Mercator the distance
sailed, the difference of latitude, and the difference of longi-
tude. _ [1036, 6° 36 24", 26° 53",
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7. A ship starting from a point in latitude 32° N. sails
N. 25° E. 16 miles, thence s. 54° E. 11 miles, thence N. 13° w. 7
miles, thence N. 61° . 5 miles, thence N. 38° w. 18 miles : find
the single course and distance that would bring her to the same
destination. - (@) N. 13°12'20" E., 32.30 miles;

(5) N. 11°40' 37" E., 32.12 miles.

8. Find the elements of the great circle track between New
York light and Cape Clear, 51°26’N., 9°29" w,

9. So, between San Francisco, 27° 48’ N., 122°25'w., and
Cape of Good Hope, 33°56's., 18°29E,
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